
碳点发光标记材料的制备及在水样中亚硝酸盐专一检测中的应用
王长莹, 张大伟, 陈冠吉, 张镇威, 萧卫泓, 王斌, 陈奇丹, 杨柏
碳点发光标记材料的制备及在水样中亚硝酸盐专一检测中的应用
Preparation of Carbon Dots Fluorescent Marker and Its Application in Highly Selective NO2 ‒ Detection
以盐酸多巴胺和邻苯二胺为原料, 通过一步水热法制备并经提纯分离后得到发射波长为535 nm的黄绿色碳点(λ ex=440 nm), 并将其作为污染物标记材料进行了应用探索. 产物表征结果表明, 该碳点尺寸约为 3 nm, 分散性良好, 具有稳定的发光性能, 适用pH范围宽且抗盐性强. 饮用水中亚硝酸盐超标可导致人类高铁血红蛋白血症, 有潜在的致癌性. 应用该碳点对水样中常见污染物进行检测, 筛选实验结果表明, 该碳点作为标记材料对亚硝酸根具有高选择性专一响应, 检出限为0.1166 μg/mL(S/N =3, n=3), 满足我国国家标准对生 活饮用水中NO2 ‒ 的限定标准(≤1 μg/mL)的要求. 在0~60 μg/mL浓度范围内符合Stern-Volmer方程, 其中在 0~10 μg/mL(y=0.02x+0.000876, R 2=0.9868)和12~60 μg/mL范围内(y=0.011x+0.198, R 2=0.9937), 均有良好的线性响应. 此外, 通过对3种不同水样进行了加标实验验证, 回收率为90.8% ~100.8%(RSD=0.03%~0.86%, n=3). 该碳点发光标记材料合成方法快速简便、 成本低, 在微痕量亚硝酸盐污染物检测中有较大的应用潜力, 可作为水源地水质监测的重要补充手段.
In this work, the yellow-green carbon dots(λ ex=440 nm) with a fluorescence emission wavelength of 535 nm were prepared by a one-step hydrothermal method using dopamine hydrochloride and o-phenylenediamine as raw materials, and then used as fluorescent marker materials for NO2 ‒ detection in water samples after purified and separated. The size of the carbon dots is about 3 nm with good dispersion, excellent salt resistance, stable fluorescence under a broad pH value. However, nitrite contaminants in water sources can cause methemoglobinemia disease and has potential carcinogenic risk. The results of the selectivity of the yellow-green carbon dots prepared to detect common contaminants in water samples showed that the carbon dots had a highly specific response to nitrite, and the detection limit was 0.1166 μg/mL(S/N=3, n=3), which meets the requirements of Chinese national standards for determination of NO2 ‒ in drinking water(≤1 μg/mL). The detection range of 0—60 μg/mL fits the Stern-Volmer equation, and the range of 0—10 μg/mL(y=0.02x+0.000876, R 2=0.9868) and 12—60 μg/mL(y=0.011x+0.198, R 2=0.9937) have good linear responses. In addition, the recoveries of three spiked water samples are from 90.8% to 100.8%(RSD=0.03%—0.86%, n=3) for the validation test. The method of the fluorescent carbon dots marker for contaminants developed in this work is fast and simple, low-cost and has greatly potential in trace nitrite analysis and can be an effective supplementary method for the monitoring of drinking water sources quality.
One-step hydrothermal method / Carbon dots / NO2 ‒ / Water quality monitoring
O657.3 / O631
1 |
Xu X. Y., Ray R., Gu Y. L., Ploehn, H. J., Gearheart L., Raker K., Scrivens W. A., J. Am. Chem. Soc., 2004, 126(40), 12736—12737
|
2 |
Xia C. L., Zhong J. D., Han X., Zhu S. J., Li Y. F., Liu H., Yang B., Angew. Chem. Int. Ed., 2024, 63(44),e202410519
|
3 |
Yang Z., Xu T. T., Li H., She M. Y., Chen J., Wang Z. H., Zhang S. Y., Li J. L., Chem. Rev., 2023, 123(18), 11047—11136
|
4 |
Gilchrist M., Winyard P. G., Benjamin N., Nitric Oxide⁃Biol. Ch., 2010, 22(2),104—109
|
5 |
Khan S., Gupta A., Verma N. C., Nandi C. K., Nano Lett., 2015, 15(12), 8300—8305
|
6 |
Shamsipur M., Molaei K., Molaabasi F., Alipour M., Alizadeh N., Hosseinkhani S., Hosseini M., Talanta, 2018, 183,122—130
|
7 |
Huang S., Yang E. L., Yao J. D., Liu Y., Xiao Q., Anal. Chim. Acta, 2018, 1035, 192—202
|
8 |
Chen Q. X., Chen Q. D., Zhong X. Y., Spectrosc. Spect. Anal., 2020, 40(10), 3086—3091
陈绮娴, 陈奇丹, 钟学沅. 光谱学与光谱分析, 2020, 40(10),3086—3091
|
9 |
Brandow A. M., Nimmer M., Simmons T., Casper T. C., Cook L. J., Chumpitazi C. E., Scott J. P., Panepinto J. A., Brousseau D. C., Am. J. Hematol., 2016, 91(12), 1175—1180
|
10 |
Majumdar D., Resonance, 2003, 8(10), 20—30
|
11 |
World Health Organization, ISBN 978⁃92⁃4⁃004506⁃4, Guidelines for Drinking⁃water Quality: Fourth Edition Incorporating the First and Second Addenda, 2022
|
12 |
National Health Commission of the People’s Republic of China, GB 5749⁃2022, Standards for Drinking Water Quality, 2022
中华人民共和国国家卫生健康委员会, GB 5749⁃2022, 中国生活饮用水标准,, 2022
|
13 |
Bain R. E. S., Gundry S. W., Wright J. A., Yang H., Pedley S., Bartram J. K., Bull. World Health Organ., 2012, 90(3), 228—235
|
14 |
Zan M. H., Rao L., Huang H. M., Xie W., Zhu D. M., Li L., Qie X. W., Guo S. S., Zhao X. Z., Liu W., Dong W. F., Sens. Actuators B, 2018, 262, 555—561
|
15 |
Hu X. T., Shi J. Y., Shi Y. Q., Zou X. B., Tahir H. E., Holmes M., Zhang W., Huang X. W., Li Z. H., Xu Y. W., Meat Sci., 2019, 147, 127—134
|
16 |
Yue X. Y., Zhou Z. J., Wu Y. M., Jie M. S., Li Y., Guo H. B., Bai Y. H., New J. Chem., 2020, 44(20), 8503—8511
|
17 |
Jia J., Lu W. J., Li L., Gao Y. F., Jiao Y., Han H., Dong C., Shuang S. M., J. Mater. Chem. B, 2020, 8(10), 2123—2127
|
18 |
Ji C. Y., Han Q. R., Zhou Y. Q., Wu J. J., Shi W. Q., Gao L. P., Leblanc R. M., Peng Z. L., Carbon, 2022, 192, 198—208
|
19 |
Lu S. Y., Sui L. Z., Liu J. J., Zhu S. J., Chen A. M., Jin M. X., Yang B., Adv. Mater., 2017, 29(15), 1603443
|
20 |
Wang H. Y., Chen D. L., Zhang S. Y., Li S., Yang X., Liang L., J. Anal. Sci., 2021, 37(3), 346—350
王惠英, 陈丁龙, 张绍岩, 李爽, 杨旭, 梁莉. 分析科学学报, 2021, 37(3), 346—350
|
21 |
Jia J., Lu W. J., Li L., Jiao Y., Gao Y. F., Shuang S. M., Chinese J. Anal. Chem., 2019, 47(4), 560—566
贾晶, 路雯靖, 李林, 焦媛, 高艺芳, 双少敏. 分析化学, 2019, 47(4), 560—566
|
22 |
Tao H. H., Zhang Z., Cao Q., Li L. F., Xu S. H., Jiang C. L., Li Y. C., Liu Y. Y., RSC Adv., 2022 , 12(20), 12655—12662
|
23 |
Zhan Y. J., Zeng Y. B., Li L., Luo F., Qiu B., Lin Z. Y., Guo L. H., ACS Sens., 2019, 4(5), 1252—1260
|
24 |
Yin X. Y., Wang C. Z., Wei S. S., Liu M., Hu K. X., Song X. W., Sun G. Y., Lu L. H., Food Chem., 2025, 463, 141213
|
25 |
Ciotta E., Prosposito P., Pizzoferrato R., J. Lumin., 2019, 206, 518—522
|
/
〈 |
|
〉 |