
乏氧激活化疗药物AQ4N与碳点自组装用于化疗联合声动力治疗肿瘤
庞娥, 唐垣钰, 赵少静, 程强, 王晨, 陈健敏, 蓝敏焕
乏氧激活化疗药物AQ4N与碳点自组装用于化疗联合声动力治疗肿瘤
Hypoxia Activated Chemotherapy Drug AQ4N and Carbon Dots Self-assembly for Chemotherapy Combined with Sonodynamic Therapy of Tumors
合成了一种具有声敏活性的红色荧光碳点(CDs), 将乏氧激活化疗药物AQ4N与CDs通过静电相互作用、 氢键和π-π相互作用组装, 制备了CDs@AQ4N纳米组装体. CDs@AQ4N在超声辐照下可有效产生单线态氧(1O2)用于声动力治疗(SDT). SDT过程消耗肿瘤内氧气进一步加剧了肿瘤乏氧, 从而激活AQ4N, 将其转化为具有细胞毒性的AQ4, 在小鼠肿瘤模型下实现了荧光成像指导下的SDT联合化疗. 小鼠主要器官切片、 血常规和血液生化分析结果均证实CDs@AQ4N具有优异的生物安全性.
A red fluorescent carbon dots(CDs) with sonodynamic activity were synthesized, and the CDs@AQ4N nano-assemblies were prepared by assembling the hypoxia-activating drug AQ4N, with CDs via electrostatic interaction, hydrogen bonding, and π-π interactions. CDs@AQ4N could effectively generate singlet oxygen(1O2) for sonodynamic therapy(SDT) of cancer cells. Moreover, the depletion of intra-tumor oxygen during SDT further exacerbated the tumor hypoxia, which activated AQ4N and converted it into cytotoxic AQ4, enabling fluorescence-imaging-guided combination of SDT and chemotherapy for the treatment of mice tumors. The excellent biosafety of CDs@AQ4N was confirmed by mouse major organ sections, blood routine and blood biochemical analyses.
Carbon dots / Hypoxic activation / Sonodynamic therapy / Chemotherapy / Synergistic therapy
O615.4
1 |
Yang F. H., Lv J. Q., Ma W., Yang Y. L., Hu X. M., Yang Z., Small, 2024, 20(44), 2402669
|
2 |
Zhu P. C., Simon I., Kokalari I., Kohane D. S., Rwei A. Y., Adv. Drug Deliver. Rev., 2024, 208, 115275
|
3 |
Xiao H., Li X. X., Li B., Zhong Y., Qin J. Y., Wang Y., Han S. S., Ren J., Shuai X. T., Acta Biomater., 2023, 161, 265─274
|
4 |
Xing X. J., Zhao S. J., Xu T., Huang L., Zhang Y., Lan M. H., Lin C. W., Zheng X. L., Wang P. F., Coord. Chem. Rev., 2021, 445, 214087
|
5 |
Chen J. J., Zhou Q., Cao W. W., Adv. Funct. Mater., 2024, 34(40), 2405844
|
6 |
Lin X. H., Song J. B., Chen X. Y., Yang H. H., Angew. Chem. Int. Ed ., 2020, 59(34), 14212─14233
|
7 |
Bathla A., Younis S. A., Kim K. H., Li X. W., Mater. Horiz., 2023, 10(5), 1559─1579
|
8 |
Guo Y. T., Li Z. Y., Guo B. C., Wang B, Tu Y. F., Nano Biomed. Eng., 2024, 16(2), 135─151
|
9 |
Jiang J. L., Cui X. Y., Huang Y. X., Yan D. M., Wang B. S., Yang Z. Y., Chen M. R., Wang J. H., Zhang Y. N., Liu G., Zhou C., Cui S. S., Ni J., Yang F. H., Cui D. X., Nano Biomed. Eng., 2024, 16(2), 152─187
|
10 |
Sharma P., Nangare S., Tade R., Patil P., Bari S., Patil D., Nano Biomed. Eng., 2024, doi: 10.26599/NBE.2024.9290069
|
11 |
Wang H., Yang S. W., Chen L. F., Li Y. Q., He P., Wang G., Dong H., Ma P. X., Ding G. Q., Bioact. Mater., 2024, 33, 174─222
|
12 |
Wang Y. Q., Li X. C., Zhao S. J., Wang B. H., Song X. Z., Xiao J. F., Lan M. H., Coord. Chem. Rev., 2022, 470, 214703
|
13 |
Yang Z., Xu T. T., Li H., She M. Y., Chen J., Wang Z. H., Zhang S. Y., Li J. L., Chem. Rev., 2023, 123(18), 11047─11136
|
14 |
Ren W. J., Wang H. Q., Chang Q., Li N., Yang J. L., Hu S. L., Carbon, 2021, 184, 102─108
|
15 |
Yang S. W., Wang X. L., He P., Xu A. L., Wang G., Duan J. L., Shi Y. Q., Ding G. Q., Small, 2021, 17(10), 2004867
|
16 |
Geng B. J., Hu J. Y., Li Y., Feng S. N., Pang D. Y., Feng L. Y., Shen L. X., Nat. Commun., 2022, 13(1), 5735
|
17 |
Jana D., Wang D. D., Rajendran P., Bindra A. K., Guo Y., Liu J. W., Pramanik M., Zhao Y. L., JACS Au, 2021, 1(12), 2328─ 2338
|
18 |
Ju Y. Y., Shi X. X., Xu S. Y., Ma X. H., Wei R. J., Hou H., Chu C. C., Sun D., Liu G., Tan Y. Z., Adv. Sci., 2022, 9(19), 2105034
|
19 |
Fan C. H., Wu N., Yeh C. K., Ultrason. Sonochem., 2023, 94, 106342
|
20 |
Tu L., Liao Z. H., Luo Z., Wu Y. L., Herramann A., Hou S. D., Exploration, 2021, 1(3), 20210023
|
21 |
Xu H., Yu N., Zhang J. L., Wang Z. J., Geng P., Wen M., Li M. Q., Zhang H. J., Chen Z. G., Biomaterials, 2020, 257, 120239
|
22 |
Meng Q. X., Wang Q., Zhang Q., Wang J., Li Y. H., Zhu S. Q., Liu R., Zhu H. J., Mater. Chem. Front., 2024, 8(5), 1362─1372
|
23 |
Miao X., Yan X. L., Qu D., Li D. B., Tao F. F., Sun Z. C., ACS Appl. Mater. Interfaces, 2017, 9(22), 18549─18556
|
24 |
Sun T. T., Zheng M., Xie Z. G., Jing X. B., Mater. Chem. Front., 2017, 1(2) 354─360
|
25 |
Miao H., Wang L., Zhuo Y., Zhou Z. N., Yang X. M., Biosens. Bioelectron., 2016, 86, 83─89
|
/
〈 |
|
〉 |