碳点在有机太阳能电池界面工程中的应用与展望

王欣, 王宇, 穆富茂, 闫翎鹏, 王振国, 杨永珍

PDF(2053 KB)
PDF(2053 KB)
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (6) : 47-62. DOI: 10.7503/cjcu20240416
综合评述

碳点在有机太阳能电池界面工程中的应用与展望

作者信息 +

Applications and Prospects of Carbon Dots in Interface Engineering of Organic Solar Cells

Author information +
History +

摘要

有机太阳能电池(OSCs)因具有制备工艺简单、 材料来源广泛、 柔性及可以卷对卷生产等优势而逐渐成为光伏领域的研究热点. 在进一步商业化推广的道路上, OSCs也面临着提高光电转换效率(PCE)、 规模化生产、 降低成本及提高稳定性等诸多挑战. 在探索解决这些问题的研究中, 碳点(CDs)因具有成本低、 结构多样、 绿色环保、 来源广泛、 导电性高及稳定性好等优点而备受关注. 在OSCs器件中, CDs可以作为电荷传输层和界面修饰层材料使用, 通过界面工程改善电池界面处的能级匹配和电荷传输性能, 提升OSCs器件的整体性能, 为光伏电池的发展提供新的思路, 成为推动OSCs发展的关键材料之一. 本文介绍了CDs的概念、 分类和独特的结构特征, 综合评述了其优异的可调光电特性和功能化改性方法, 总结了CDs在OSCs界面工程领域的应用, 指出了应用于OSCs领域的CDs基界面材料存在的问题, 并对其进一步发展进行了展望.

Abstract

Organic solar cells(OSCs) have gradually become a research focus in the photovoltaic field due to their advantages, such as simple fabrication processes, diverse material sources, flexibility, and roll-to-roll production capability. However, as OSCs move toward further commercialization, they face challenges such as improving power conversion efficiency(PCE), scaling up production, reducing costs, and enhancing stability. In addressing these issues, carbon dots(CDs) have garnered widespread attention due to their low cost, diverse structures, environmental friendliness, wide availability, high conductivity, and good stability. In OSC devices, CDs can be used as charge transport layers and interface modification materials, improving the energy level matching and charge transport performance at the cell interface through interface engineering, thereby enhancing the overall performance of OSCs and providing new insights for the development of photovoltaic cells. In this review, the concept, classification, and unique structural features of CDs are introduced. Then, the excellent tunable optoelectronic properties and functionalization modification methods of CDs are highlighted. Furthermore, the application of CDs in the field of interface engineering of OSCs is comprehensively summarized, and finally the challenges associated with CDs-based interface materials in OSCs, along with prospects for their further development, are addressed.

关键词

有机太阳能电池 / 碳点 / 界面工程 / 电荷传输 / 光电转换

Key words

Organic solar cell / Carbon dots / Interface engineering / Charge transfer / Photoelectric conversion

中图分类号

O649 / TM914.4

引用本文

导出引用
王欣 , 王宇 , 穆富茂 , . 碳点在有机太阳能电池界面工程中的应用与展望. 高等学校化学学报. 2025, 46(6): 47-62 https://doi.org/10.7503/cjcu20240416
WANG Xin, WANG Yu, MU Fumao, et al. Applications and Prospects of Carbon Dots in Interface Engineering of Organic Solar Cells[J]. Chemical Journal of Chinese Universities. 2025, 46(6): 47-62 https://doi.org/10.7503/cjcu20240416

参考文献

1
Zhao J., Yang X., Shao Y., Sun R., Min J., Sci. China Mater.2024, doi.org/10.1007/s40843-024-3074-6
2
Kini G. P., Jeon S. J., Moon D. K., Adv. Funct. Mater.202131(15), 2007931
3
Chen X., Qian D., Wang Y., Kirchartz T., Tress W., Yao H., Yuan J., Hülsbeck M., Zhang M., Zou Y., Sun Y., Li Y., Hou J., Inganäs O., Coropceanu V., Bredas J. L., Gao F., Nature Energy20216(8), 799—806
4
Mu Q., Feng L., Li Z., Fan K., Li Q., Wei Z., Cheng Y., Xu B., Sol. RRL2024 8(18), 2400486
5
Gong Y., Zou T., Li X., Qin S., Sun G., Liang T., Zhou R., Zhang J., Zhang J., Meng L., Wei Z., Li Y., Energy Environ. Sci.202417, 6844—6855
6
Liu H., Li Y., Xu S., Zhou Y., Li Z., Adv. Funct. Mater.2021, 31(50), 2106735
7
Fukuda K., Yu K., Someya T., Adv. Energy Mater.202010(25), 2000765
8
Yu R., Wu G., Tan Z., J. Energy Chem.202161, 29—46
9
Gao J., Ma X., Xu C., Wang X., Son J., Jeong S. Y., Zhang Y., Zhang C., Wang K., Niu L., Zhang J., Woo H. Y., Zhang J., Zhang F., Chem. Eng. J.2022428, 129276
10
Guan S., Li Y., Xu C., Yin N., Xu C., Wang C., Wang M., Xu Y., Chen Q., Wang D., Zuo L., Chen H., Adv. Mater.2024, 36, 2400342
11
Ye L., Xiong Y., Zhang Q., Li S., Wang C., Jiang Z., Hou J., You W., Ade H., Adv. Mater.201830(8), 1705485
12
Liu Y., Liu B., Ma C., Huang F., Feng G., Chen H., Hou J., Yan L., Wei Q., Luo Q., Bao Q., Ma W., Liu W., Li W., Wan X., Hu X., Han Y., Li Y., Zhou Y., Zou Y., Chen Y., Liu Y., Meng L., Li Y., Chen Y., Tang Z., Hu Z., Zhang Z., Bo Z., Sci. China Chem.202265, 224—268
13
Bao L., Zhang Z., Tian Z., Zhang L., Liu C., Lin Y., Qi B., Pang D., Adv. Mater.201123(48), 5801—5806
14
Kang Z., Lee S. T., Nanoscale201911(41), 19214—19224
15
Yeh T. F., Huang W., Chung C., Chiang I. T., Chen L., Chang H., Su W., Cheng C., Chen S., Teng H., J. Phys. Chem. Lett.20167(11), 2087—2092
16
Zhao W., Li X., Zha H., Yang Y., Yan L., Luo Q., Liu X., Wang H., Ma C. Xu B., Chin. J. Polym. Sci.202240(1), 7—20
17
Iijima S., Nature1991354(6348), 56—58
18
Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Science2004306, 666—669
19
Xu X., Ray R., Gu Y., Ploehn H. J., Gearheart L., Raker K., Scrivens W. A., J. Am. Chem. Soc.2004126(40), 12736—12737
20
Sun Y., Zhou B., Lin Y., Wang W., Fernando K. S., Pathak P., Meziani M. J., Harruff B. A., Wang X., Wang H., J. Am. Chem. Soc.2006128(24), 7756—7757
21
Cai T., Liu B., Pang E., Ren W., Li S., Hu S., New Carbon Mater.202035(6), 646—666
22
Lu S., Yang B., SmartMat20223(2), 207
23
Xia C., Zhu S., Feng T., Yang M., Yang B., Adv. Sci.20196(23), 1901316
24
Zhao X., Tao S., Yang B., Chinese J. Chem., 202341(17), 2206—2216
25
Kong J., Wei Y., Zhou F., Shi L., Zhao S., Wan M., Zhang X., Molecules202429(9), 2002
26
Vercelli B., Coatings202111(2), 232
27
Shin D. H., Seo S. W., Kim J. M., Lee H. S., Choi S. H., J. Alloys Compd.2018744, 1—6
28
Zhang X., Li Z., Zhang Z., Li S., Liu C., Guo W., Shen L., Wen S., Qu S., Ruan S., J. Phys. Chem. C2016120(26), 13954—13962
29
Wang W., Li X., Li M., Zhong W., Yuan Y., Lin Z., Zhu Y., Zhu S., Yang T., Liang Y., ACS Appl. Nano Mater.20247(17, 19963—19969
30
Yue L., Wei Y., Fan J., Chen L., Li Q., Du J., Yu S., Yang Y., New Carbon Mater.202136(2), 373—389
31
Namdari P., Negahdari B., Eatemadi A., Biomed. Pharmacother.201787, 209—222
32
Sciortino A., Cannizzo A., Messina F., C⁃J. Carbon Res.20184(4), 67
33
Li K., Suo W., Shao M., Zhu Y., Wang X., Feng J., Fang M., Zhu Y., Nano Energy201963, 103834
34
Song H., Liu X., Wang B., Tang Z., Lu S., Sci. Bull.201964(23), 1788—1794
35
Zhu S., Meng Q., Wang L., Zhang J., Song Y., Jin H., Zhang K., Sun H., Wang H., Yang B., Angew. Chem. Int. Ed.201352(14), 3953—3957
36
Tang L., Ji R., Li X., Bai G., Liu C., Hao J., Lin J., Jiang H., Teng K., Yang Z., ACS Nano20148(6), 6312—6320
37
Wu, Z., Liu Z., Yuan Y., J. Mater. Chem. B20175(21), 3794—3809
38
Holá K., Sudolská M., Kalytchuk S., Nachtigallová D., Rogach A. L., Otyepka M., Zbořil R., ACS Nano201711(12), 12402—12410
39
Yang Y., Lin X., Li W., Ou J., Yuan Z., Xie F., Hong W., Yu D., Ma Y., Chi Z., Chen X., ACS Appl. Mater.20179(17), 14953—14959
40
Zhan J., Geng B., Wu K., Xu G., Wang L., Guo R., Lei B., Zheng F., Pan D., Wu M., Carbon2018130, 153—163
41
Zhang M., Hu L., Wang H., Song Y., Liu Y., Li H., Shao M., Huang H., Kang Z., Nanoscale201810(26), 12734—12742
42
Lu S., Xiao G., Sui L., Feng T., Yong X., Zhu S., Li B., Liu Z., Zou B., Jin M., Tse J. S., Yan H., Yang B., Angew. Chem. Int. Ed.2017129(22), 6283—6287
43
Yu Y., Zeng Q., Tao S., Xia C., Liu C., Liu P., Yang B., Adv. Sci., 202310(12), 2207621
44
Molaei M., Sol. Energy2020196, 549—566
45
He C., Peng L., Li L., Cao Y., Tu J., Huang W., Zhang K., RSC Adv.20199(26), 15084—15091
46
Jia X., Li J., Wang E., Nanoscale20124(18), 5572—5575
47
Shen J., Zhu Y., Chen C., Yang X., Li C., Chem. Commun., 2011, 47(9), 2580—2582
48
Li S., He Z., Zhang S., Hao Z., Zhong H., ACS Appl. Mater. Interfaces2024, 16(35), 46332—46340
49
Javed N., O'Carroll D. M., Part. Part. Syst. Char.202138(4), 2000271
50
Tian X., Li Y., Cui M., Wang Y., Hao X., Zhang Y., Li N., Chen Y., Gao X., Rong Q., Nian L., Org. Electron.2022108, 106578
51
Liu J., Li R., Yang B., ACS Cent. Sci.20206, 2179—2195
52
Yan L., Yang Y., Ma C., Liu X., Wang H., Xu B., Carbon2016109, 598—607
53
Dong Y., Yu R., Zhao B., Gong Y., Jia H., Ma Z., Gao H., Tan Z., ACS Appl. Mater.202214(1), 1280—1289
54
Hazra N., Hazra S., Paul S., Banerjee A., Chem. Commun.202359, 4931—4934
55
Fang M., Wang B., Qu X., Li S., Huang J., Li J., Lu S., Zhou N., Chin. Chem. Lett., 202435(1), 108423
56
Li X., Wang W., Zhong W., Tang Y., Wang X., Li H., Yang T., Liang Y., Adv. Mater. Interfaces202310(35), 2300502
57
Chen B., Liu M., Li C., Huang C., Adv. Colloid Interface Sci.2019270, 165—190
58
Miao S., Liang K., Zhu J., Yang B., Zhao D., Kong B., Nano Today, 2020, 33, 100879
59
Nguyen D. N., Roh S. H., Kim D. H., Lee J. Y., Wang D. H., Kim J. K., Dyes Pigm.2021194, 109610
60
Fu Q., Sun S., Lu K., Li N., Dong Z., Chin. Chem. Lett.202435(7), 109136
61
Fu Q., Li N., Lu K., Dong Z., Yang Y., Mater. Today Chem.202437, 102032
62
Shen J., Zhang T., Cai Y., Chen X., Shang S., Li J., New J. Chem.201741(19), 11125—11137
63
Wu M., Li J., Wu Y., Gong X., Wu M., Small202319(42), 2302764
64
Sato K., Sato R., Iso Y., Isobe T., Chem. Commun.202056(14), 2174—2177
65
Kearns D., Calvin M., J. Chem. Phys.195829(4), 950—951
66
Pang S., Chen Z., Li J., Chen Y., Liu Z., Wu H., Duan C., Huang F., Cao Y., Mater. Horiz.202310(2), 473—482
67
Georgiopoulou Z., Verykios A., Ladomenou K., Maskanaki K., Chatzigiannakis G., Armadorou K. K., Palilis L. C., Chroneos A., Evangelou E. K., Gardelis S., Nanomaterials202313(1), 169
68
Li M., Ni W., Kan B., Wan X., Zhang L., Zhang Q., Long G., Zuo Y., Chen Y., Phys. Chem. Chem. Phys.201315(43), 18973—18978
69
Ding Z., Hao Z., Meng B., Xie Z., Liu J., Dai L., Nano Energy201515, 186—192
70
Hoang T. T., Pham H. P., Tran Q. T., J. Nanomater.20202020(1), 3207909
71
Li S., Li L., Tu H., Zhang H., Silvester D. S., Banks C. E., Zou G., Hou H., Ji X., Mater. Today202151, 188—207
72
Ding Z., Miao Z., Xie Z., Liu J., J. Mater. Chem. A20164(7), 2413—2418
73
Xu H., Zhang L., Ding Z., Hu J., Liu J., Liu Y., Nano Res.201811, 4293—4301
74
Zhang R., Zhao M., Wang Z., Wang Z., Zhao B., Miao Y., Zhou Y., Wang H., Hao Y., Chen G., ACS Appl. Mater. Interfaces201810(5), 4895—4903
75
Zhao W., Yan L., Gu H., Li Z., Wang Y., Luo Q., Yang Y., Liu X., Wang H., Ma C., ACS Appl. Energy Mater.20203(11), 11388—11397
76
Zhu Y., Dai C., Hao C., Guo H., Yan L., Colloid. Surface. A2022648, 129401
77
Lin X., Yang Y., Nian L., Su H., Ou J., Yuan Z., Xie F., Hong W., Yu D., Zhang M., Nano Energy201626, 216—223
78
Zhang X., Liu C., Li Z., Guo J., Shen L., Guo W., Zhang L., Ruan S., Long Y., Chem. Eng. J.2017315, 621—629
79
Wang Y., Yan L., Ji G., Wang C., Gu H., Luo Q., Chen Q., Chen L., Yang Y., Ma C., ACS Appl. Mater.201811(2), 2243—2253
80
Kang R., Park S., Jung Y. K., Lim D. C., Cha M. J., Seo J. H., Cho S., Adv. Energy Mater.20188(10), 1702165
81
Juang T., Kao J., Wang J., Hsu S., Chen C., Adv. Mater. Interfaces20185(10), 1800031
82
Park S., Lee H., Park S. W., Kim T. E., Park S. H., Jung Y. K., Cho S., Curr. Appl Phys.202121, 140—146
83
Nguyen D. C., Kim B. S., Oh G. H., Vu V. P., Kim S., Lee S. H., Synth. Met.2023298, 117430
84
Tafese B. N., Aga F. G., Ganesh T., Geffe C. A., Int. J. Energy Res.20232023(1), 8847653
85
Li Z., Zhang X., Liu C., Guo J., Cui H., Shen L., Guo W., ACS Appl. Mater. Interfaces201810(46), 40255—40264

评论

PDF(2053 KB)

Accesses

Citation

Detail

段落导航
相关文章

/