
碳点在有机太阳能电池界面工程中的应用与展望
王欣, 王宇, 穆富茂, 闫翎鹏, 王振国, 杨永珍
碳点在有机太阳能电池界面工程中的应用与展望
Applications and Prospects of Carbon Dots in Interface Engineering of Organic Solar Cells
有机太阳能电池(OSCs)因具有制备工艺简单、 材料来源广泛、 柔性及可以卷对卷生产等优势而逐渐成为光伏领域的研究热点. 在进一步商业化推广的道路上, OSCs也面临着提高光电转换效率(PCE)、 规模化生产、 降低成本及提高稳定性等诸多挑战. 在探索解决这些问题的研究中, 碳点(CDs)因具有成本低、 结构多样、 绿色环保、 来源广泛、 导电性高及稳定性好等优点而备受关注. 在OSCs器件中, CDs可以作为电荷传输层和界面修饰层材料使用, 通过界面工程改善电池界面处的能级匹配和电荷传输性能, 提升OSCs器件的整体性能, 为光伏电池的发展提供新的思路, 成为推动OSCs发展的关键材料之一. 本文介绍了CDs的概念、 分类和独特的结构特征, 综合评述了其优异的可调光电特性和功能化改性方法, 总结了CDs在OSCs界面工程领域的应用, 指出了应用于OSCs领域的CDs基界面材料存在的问题, 并对其进一步发展进行了展望.
Organic solar cells(OSCs) have gradually become a research focus in the photovoltaic field due to their advantages, such as simple fabrication processes, diverse material sources, flexibility, and roll-to-roll production capability. However, as OSCs move toward further commercialization, they face challenges such as improving power conversion efficiency(PCE), scaling up production, reducing costs, and enhancing stability. In addressing these issues, carbon dots(CDs) have garnered widespread attention due to their low cost, diverse structures, environmental friendliness, wide availability, high conductivity, and good stability. In OSC devices, CDs can be used as charge transport layers and interface modification materials, improving the energy level matching and charge transport performance at the cell interface through interface engineering, thereby enhancing the overall performance of OSCs and providing new insights for the development of photovoltaic cells. In this review, the concept, classification, and unique structural features of CDs are introduced. Then, the excellent tunable optoelectronic properties and functionalization modification methods of CDs are highlighted. Furthermore, the application of CDs in the field of interface engineering of OSCs is comprehensively summarized, and finally the challenges associated with CDs-based interface materials in OSCs, along with prospects for their further development, are addressed.
有机太阳能电池 / 碳点 / 界面工程 / 电荷传输 / 光电转换
Organic solar cell / Carbon dots / Interface engineering / Charge transfer / Photoelectric conversion
O649 / TM914.4
1 |
Zhao J., Yang X., Shao Y., Sun R., Min J., Sci. China Mater., 2024, doi.org/10.1007/s40843-024-3074-6
|
2 |
Kini G. P., Jeon S. J., Moon D. K., Adv. Funct. Mater., 2021, 31(15), 2007931
|
3 |
Chen X., Qian D., Wang Y., Kirchartz T., Tress W., Yao H., Yuan J., Hülsbeck M., Zhang M., Zou Y., Sun Y., Li Y., Hou J., Inganäs O., Coropceanu V., Bredas J. L., Gao F., Nature Energy, 2021, 6(8), 799—806
|
4 |
Mu Q., Feng L., Li Z., Fan K., Li Q., Wei Z., Cheng Y., Xu B., Sol. RRL, 2024, 8(18), 2400486
|
5 |
Gong Y., Zou T., Li X., Qin S., Sun G., Liang T., Zhou R., Zhang J., Zhang J., Meng L., Wei Z., Li Y., Energy Environ. Sci., 2024, 17, 6844—6855
|
6 |
Liu H., Li Y., Xu S., Zhou Y., Li Z., Adv. Funct. Mater., 2021, 31(50), 2106735
|
7 |
Fukuda K., Yu K., Someya T., Adv. Energy Mater., 2020, 10(25), 2000765
|
8 |
Yu R., Wu G., Tan Z., J. Energy Chem., 2021, 61, 29—46
|
9 |
Gao J., Ma X., Xu C., Wang X., Son J., Jeong S. Y., Zhang Y., Zhang C., Wang K., Niu L., Zhang J., Woo H. Y., Zhang J., Zhang F., Chem. Eng. J., 2022, 428, 129276
|
10 |
Guan S., Li Y., Xu C., Yin N., Xu C., Wang C., Wang M., Xu Y., Chen Q., Wang D., Zuo L., Chen H., Adv. Mater., 2024, 36, 2400342
|
11 |
Ye L., Xiong Y., Zhang Q., Li S., Wang C., Jiang Z., Hou J., You W., Ade H., Adv. Mater., 2018, 30(8), 1705485
|
12 |
Liu Y., Liu B., Ma C., Huang F., Feng G., Chen H., Hou J., Yan L., Wei Q., Luo Q., Bao Q., Ma W., Liu W., Li W., Wan X., Hu X., Han Y., Li Y., Zhou Y., Zou Y., Chen Y., Liu Y., Meng L., Li Y., Chen Y., Tang Z., Hu Z., Zhang Z., Bo Z., Sci. China Chem., 2022, 65, 224—268
|
13 |
Bao L., Zhang Z., Tian Z., Zhang L., Liu C., Lin Y., Qi B., Pang D., Adv. Mater., 2011, 23(48), 5801—5806
|
14 |
Kang Z., Lee S. T., Nanoscale, 2019, 11(41), 19214—19224
|
15 |
Yeh T. F., Huang W., Chung C., Chiang I. T., Chen L., Chang H., Su W., Cheng C., Chen S., Teng H., J. Phys. Chem. Lett., 2016, 7(11), 2087—2092
|
16 |
Zhao W., Li X., Zha H., Yang Y., Yan L., Luo Q., Liu X., Wang H., Ma C. Xu B., Chin. J. Polym. Sci., 2022, 40(1), 7—20
|
17 |
Iijima S., Nature, 1991, 354(6348), 56—58
|
18 |
Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Science, 2004, 306, 666—669
|
19 |
Xu X., Ray R., Gu Y., Ploehn H. J., Gearheart L., Raker K., Scrivens W. A., J. Am. Chem. Soc., 2004, 126(40), 12736—12737
|
20 |
Sun Y., Zhou B., Lin Y., Wang W., Fernando K. S., Pathak P., Meziani M. J., Harruff B. A., Wang X., Wang H., J. Am. Chem. Soc., 2006, 128(24), 7756—7757
|
21 |
Cai T., Liu B., Pang E., Ren W., Li S., Hu S., New Carbon Mater., 2020, 35(6), 646—666
|
22 |
Lu S., Yang B., SmartMat, 2022, 3(2), 207
|
23 |
Xia C., Zhu S., Feng T., Yang M., Yang B., Adv. Sci., 2019, 6(23), 1901316
|
24 |
Zhao X., Tao S., Yang B., Chinese J. Chem., 2023, 41(17), 2206—2216
|
25 |
Kong J., Wei Y., Zhou F., Shi L., Zhao S., Wan M., Zhang X., Molecules, 2024, 29(9), 2002
|
26 |
Vercelli B., Coatings, 2021, 11(2), 232
|
27 |
Shin D. H., Seo S. W., Kim J. M., Lee H. S., Choi S. H., J. Alloys Compd., 2018, 744, 1—6
|
28 |
Zhang X., Li Z., Zhang Z., Li S., Liu C., Guo W., Shen L., Wen S., Qu S., Ruan S., J. Phys. Chem. C, 2016, 120(26), 13954—13962
|
29 |
Wang W., Li X., Li M., Zhong W., Yuan Y., Lin Z., Zhu Y., Zhu S., Yang T., Liang Y., ACS Appl. Nano Mater., 2024, 7(17), 19963—19969
|
30 |
Yue L., Wei Y., Fan J., Chen L., Li Q., Du J., Yu S., Yang Y., New Carbon Mater., 2021, 36(2), 373—389
|
31 |
Namdari P., Negahdari B., Eatemadi A., Biomed. Pharmacother., 2017, 87, 209—222
|
32 |
Sciortino A., Cannizzo A., Messina F., C⁃J. Carbon Res., 2018, 4(4), 67
|
33 |
Li K., Suo W., Shao M., Zhu Y., Wang X., Feng J., Fang M., Zhu Y., Nano Energy, 2019, 63, 103834
|
34 |
Song H., Liu X., Wang B., Tang Z., Lu S., Sci. Bull., 2019, 64(23), 1788—1794
|
35 |
Zhu S., Meng Q., Wang L., Zhang J., Song Y., Jin H., Zhang K., Sun H., Wang H., Yang B., Angew. Chem. Int. Ed., 2013, 52(14), 3953—3957
|
36 |
Tang L., Ji R., Li X., Bai G., Liu C., Hao J., Lin J., Jiang H., Teng K., Yang Z., ACS Nano, 2014, 8(6), 6312—6320
|
37 |
Wu, Z., Liu Z., Yuan Y., J. Mater. Chem. B, 2017, 5(21), 3794—3809
|
38 |
Holá K., Sudolská M., Kalytchuk S., Nachtigallová D., Rogach A. L., Otyepka M., Zbořil R., ACS Nano, 2017, 11(12), 12402—12410
|
39 |
Yang Y., Lin X., Li W., Ou J., Yuan Z., Xie F., Hong W., Yu D., Ma Y., Chi Z., Chen X., ACS Appl. Mater., 2017, 9(17), 14953—14959
|
40 |
Zhan J., Geng B., Wu K., Xu G., Wang L., Guo R., Lei B., Zheng F., Pan D., Wu M., Carbon, 2018, 130, 153—163
|
41 |
Zhang M., Hu L., Wang H., Song Y., Liu Y., Li H., Shao M., Huang H., Kang Z., Nanoscale, 2018, 10(26), 12734—12742
|
42 |
Lu S., Xiao G., Sui L., Feng T., Yong X., Zhu S., Li B., Liu Z., Zou B., Jin M., Tse J. S., Yan H., Yang B., Angew. Chem. Int. Ed., 2017, 129(22), 6283—6287
|
43 |
Yu Y., Zeng Q., Tao S., Xia C., Liu C., Liu P., Yang B., Adv. Sci., 2023, 10(12), 2207621
|
44 |
Molaei M., Sol. Energy, 2020, 196, 549—566
|
45 |
He C., Peng L., Li L., Cao Y., Tu J., Huang W., Zhang K., RSC Adv., 2019, 9(26), 15084—15091
|
46 |
Jia X., Li J., Wang E., Nanoscale, 2012, 4(18), 5572—5575
|
47 |
Shen J., Zhu Y., Chen C., Yang X., Li C., Chem. Commun., 2011, 47(9), 2580—2582
|
48 |
Li S., He Z., Zhang S., Hao Z., Zhong H., ACS Appl. Mater. Interfaces, 2024, 16(35), 46332—46340
|
49 |
Javed N., O'Carroll D. M., Part. Part. Syst. Char., 2021, 38(4), 2000271
|
50 |
Tian X., Li Y., Cui M., Wang Y., Hao X., Zhang Y., Li N., Chen Y., Gao X., Rong Q., Nian L., Org. Electron., 2022, 108, 106578
|
51 |
Liu J., Li R., Yang B., ACS Cent. Sci., 2020, 6, 2179—2195
|
52 |
Yan L., Yang Y., Ma C., Liu X., Wang H., Xu B., Carbon, 2016, 109, 598—607
|
53 |
Dong Y., Yu R., Zhao B., Gong Y., Jia H., Ma Z., Gao H., Tan Z., ACS Appl. Mater., 2022, 14(1), 1280—1289
|
54 |
Hazra N., Hazra S., Paul S., Banerjee A., Chem. Commun., 2023, 59, 4931—4934
|
55 |
Fang M., Wang B., Qu X., Li S., Huang J., Li J., Lu S., Zhou N., Chin. Chem. Lett., 2024, 35(1), 108423
|
56 |
Li X., Wang W., Zhong W., Tang Y., Wang X., Li H., Yang T., Liang Y., Adv. Mater. Interfaces, 2023, 10(35), 2300502
|
57 |
Chen B., Liu M., Li C., Huang C., Adv. Colloid Interface Sci., 2019, 270, 165—190
|
58 |
Miao S., Liang K., Zhu J., Yang B., Zhao D., Kong B., Nano Today, 2020, 33, 100879
|
59 |
Nguyen D. N., Roh S. H., Kim D. H., Lee J. Y., Wang D. H., Kim J. K., Dyes Pigm., 2021, 194, 109610
|
60 |
Fu Q., Sun S., Lu K., Li N., Dong Z., Chin. Chem. Lett., 2024, 35(7), 109136
|
61 |
Fu Q., Li N., Lu K., Dong Z., Yang Y., Mater. Today Chem., 2024, 37, 102032
|
62 |
Shen J., Zhang T., Cai Y., Chen X., Shang S., Li J., New J. Chem., 2017, 41(19), 11125—11137
|
63 |
Wu M., Li J., Wu Y., Gong X., Wu M., Small, 2023, 19(42), 2302764
|
64 |
Sato K., Sato R., Iso Y., Isobe T., Chem. Commun., 2020, 56(14), 2174—2177
|
65 |
Kearns D., Calvin M., J. Chem. Phys., 1958, 29(4), 950—951
|
66 |
Pang S., Chen Z., Li J., Chen Y., Liu Z., Wu H., Duan C., Huang F., Cao Y., Mater. Horiz., 2023, 10(2), 473—482
|
67 |
Georgiopoulou Z., Verykios A., Ladomenou K., Maskanaki K., Chatzigiannakis G., Armadorou K. K., Palilis L. C., Chroneos A., Evangelou E. K., Gardelis S., Nanomaterials, 2023, 13(1), 169
|
68 |
Li M., Ni W., Kan B., Wan X., Zhang L., Zhang Q., Long G., Zuo Y., Chen Y., Phys. Chem. Chem. Phys., 2013, 15(43), 18973—18978
|
69 |
Ding Z., Hao Z., Meng B., Xie Z., Liu J., Dai L., Nano Energy, 2015, 15, 186—192
|
70 |
Hoang T. T., Pham H. P., Tran Q. T., J. Nanomater., 2020, 2020(1), 3207909
|
71 |
Li S., Li L., Tu H., Zhang H., Silvester D. S., Banks C. E., Zou G., Hou H., Ji X., Mater. Today, 2021, 51, 188—207
|
72 |
Ding Z., Miao Z., Xie Z., Liu J., J. Mater. Chem. A, 2016, 4(7), 2413—2418
|
73 |
Xu H., Zhang L., Ding Z., Hu J., Liu J., Liu Y., Nano Res., 2018, 11, 4293—4301
|
74 |
Zhang R., Zhao M., Wang Z., Wang Z., Zhao B., Miao Y., Zhou Y., Wang H., Hao Y., Chen G., ACS Appl. Mater. Interfaces, 2018, 10(5), 4895—4903
|
75 |
Zhao W., Yan L., Gu H., Li Z., Wang Y., Luo Q., Yang Y., Liu X., Wang H., Ma C., ACS Appl. Energy Mater., 2020, 3(11), 11388—11397
|
76 |
Zhu Y., Dai C., Hao C., Guo H., Yan L., Colloid. Surface. A, 2022, 648, 129401
|
77 |
Lin X., Yang Y., Nian L., Su H., Ou J., Yuan Z., Xie F., Hong W., Yu D., Zhang M., Nano Energy, 2016, 26, 216—223
|
78 |
Zhang X., Liu C., Li Z., Guo J., Shen L., Guo W., Zhang L., Ruan S., Long Y., Chem. Eng. J., 2017, 315, 621—629
|
79 |
Wang Y., Yan L., Ji G., Wang C., Gu H., Luo Q., Chen Q., Chen L., Yang Y., Ma C., ACS Appl. Mater., 2018, 11(2), 2243—2253
|
80 |
Kang R., Park S., Jung Y. K., Lim D. C., Cha M. J., Seo J. H., Cho S., Adv. Energy Mater., 2018, 8(10), 1702165
|
81 |
Juang T., Kao J., Wang J., Hsu S., Chen C., Adv. Mater. Interfaces, 2018, 5(10), 1800031
|
82 |
Park S., Lee H., Park S. W., Kim T. E., Park S. H., Jung Y. K., Cho S., Curr. Appl Phys., 2021, 21, 140—146
|
83 |
Nguyen D. C., Kim B. S., Oh G. H., Vu V. P., Kim S., Lee S. H., Synth. Met., 2023, 298, 117430
|
84 |
Tafese B. N., Aga F. G., Ganesh T., Geffe C. A., Int. J. Energy Res., 2023, 2023(1), 8847653
|
85 |
Li Z., Zhang X., Liu C., Guo J., Cui H., Shen L., Guo W., ACS Appl. Mater. Interfaces, 2018, 10(46), 40255—40264
|
/
〈 |
|
〉 |