
碳基湿气发电器件的研究进展
李奇军, 赵宏佳, 刘龙涛, 鹿春怡, 谈静
碳基湿气发电器件的研究进展
Research Progress of Carbon-based Moisture Power Generation Devices
湿气发电是近年来兴起的一种新型能源转化方式, 它可以将大气环境湿气中的能量直接转化为电能, 且不会衍生任何污染物及有害气体. 得益于大气中无处不在的水汽和清洁无污染的发电过程, 这一发电技术适应性极宽, 不受时间、 地域及环境等自然条件限制, 因此“水汽发电”具有非常好的发展前景. 本文简单回顾了湿气发电技术的演进历程, 讨论了湿气与发电材料之间的相互作用机理, 主要包括离子梯度扩散和流动电势两个方面, 并对新型碳基吸湿层材料的种类、 特性及其优缺点进行了分析, 综合评述了湿气发电技术在最新应用领域的发展情况, 最后, 讨论了碳基湿气发电器件在应用中所面临的挑战和障碍, 并对未来该领域的研究方向进行了展望.
Moisture-enabled electricity generation(MEG), an emerging energy-harvesting technology, has attracted significant attention in recent years. Owing to the ubiquitous presence of water vapor and the pollution-free nature of the power generation process, MEG technology demonstrates strong adaptability, that is, it is not limited by natural conditions such as season, region and environment. This paper presents a comprehensive review of the evolution of MEG technology. It discusses the interaction mechanism between moisture and power generation materials, primarily focusing on ion gradient diffusion and streaming potential. It also provides a detailed analysis of the types, characteristics, advantages and disadvantages of new carbon-based hygroscopic layer materials. Furthermore, it describes the development of moisture power generation technology in the latest application fields.
Water vapor / Hygroscopic layer / Electrode / Moisture power generation
O631
1 |
Wang X., Lin F., Wang X., Fang S., Tan J., Chu W., Rong R., Yin J., Zhang Z., Liu Y., Guo W., Chem. Soc. Rev., 2022, 51, 4902—4927
|
2 |
Zhao F., Cheng H., Zhang Z., Jiang L., Qu L., Adv. Mater., 2015, 27, 4351—4357
|
3 |
Lu W., Ong W. L., Ho G. W., J. Mater. Chem. A, 2023, 11, 12456—12481
|
4 |
Zhang Z., Li X., Yin J., Xu Y., Fei W., Xue M., Wang Q., Zhou J., Guo W., Nat. Nanotech., 2018, 13, 1109—1119
|
5 |
Yang S., Tao X., Chen W., Mao J., Luo H., Lin S., Zhang L., Hao J., Adv. Mater., 2022, 34, 2200693
|
6 |
Xue G., Xu Y., Ding T., Li J., Yin J., Fei W., Cao Y., Yu J., Yuan L., Gong L., Chen J., Deng S., Zhou J., Guo W., Nat. Nanotech., 2017, 12, 317—321
|
7 |
Sun Z., Feng L., Wen X., Wang L., Qin X., Yu J., Mater. Horiz., 2021, 8, 2303—2309
|
8 |
He T., Wang H., Lu B., Guang T., Yang C., Huang Y., Cheng H., Qu L., Joule, 2023, 7, 935—951
|
9 |
Zhao F., Liang Y., Cheng H., Jiang L., Qu L., Energ. Environ. Sci., 2016, 9, 912—916
|
10 |
Huang Y., Cheng H., Yang C., Zhang P., Liao Q., Yao H., Shi G., Qu L., Nat. Commun., 2018, 9, 4166
|
11 |
Xiong C., Li B., Duan C., Dai L., Nie S., Qin C., Xu Y., Ni Y., Chem. Eng. J., 2021, 418, 129518
|
12 |
Zhu R., Zhu Y., Chen F., Patterson R., Zhou Y., Wan T., Hu L., Wu T., Joshi R., Li M., Cazorla C., Lu Y., Han Z., Chu D., Nano Energy, 2022, 94, 106942
|
13 |
Zhao C. X., Liu J. N., Li B. Q., Ren D., Chen X., Yu J., Zhang Q., Adv. Funct. Mater., 2020, 30, 2003619
|
14 |
Han Y., Zhang Z., Qu L., FlatChem, 2019, 14, 100090
|
15 |
Huang Y., Cheng H., Shi G., Qu L., ACS Appl. Mater. Interfaces, 2017, 9, 38170—38175
|
16 |
Lee K. H., Park H., Eom W., Kang D. J., Noh S. H., Han T. H., J. Mater. Chem. A, 2019, 7, 23727—23732
|
17 |
Badatya S., Kumar A., Sharma C., Srivastava A. K., Chaurasia J. P., Gupta M. K., Mater. Lett., 2021, 290, 129493
|
18 |
Ru Y., Ai L., Jia T., Liu X., Lu S., Tang Z., Yang B., Nano Today, 2020, 34, 100953
|
19 |
Zhu S., Zhang J., Qiao C., Tang S., Li Y., Yuan W., Li B., Tian L., Liu F., Hu R., Gao H., Wei H., Zhang H., Sun H., Yang B., Chem. Commun., 2011, 47, 6858—6860
|
20 |
Xia C., Zhu S., Feng T., Yang M., Yang B., Adv. Sci., 2019, 6, 1901316
|
21 |
Li Q., Zhou M., Yang Q., Yang M., Wu Q., Zhang Z., Yu J., J. Mater. Chem. A, 2018, 6, 10639—10643
|
22 |
Qin J., Yang X., Shen C., Chang Y., Deng Y., Zhang Z., Liu H., Lv C., Li Y., Zhang C., Dong L., Shan C., Nano Energy, 2022, 101, 107549
|
23 |
Yan Z., Li N., Chang Q., Xue C., Yang J., Hu S., Chem. Eng. J., 2023, 467, 143443
|
24 |
Li Q., Qin Y., Cheng D., Cheng M., Zhao H., Li L., Qu S., Tan J., Ding J., Adv. Funct. Mater., 2023, 33, 2211013
|
25 |
Liu X., Gao H., Ward J. E., Liu X., Yin B., Fu T., Chen J., Lovley D. R., Yao J., Nature, 2020, 578, 550—554
|
26 |
Yang W. Q., Study on the Construction and Properties of Moisture Power Generation Materials Based on Biomass Nanofibers, Qingdao University, Qingdao, 2020
杨伟庆. 基于生物质纳米纤维的湿气发电材料构筑及其性能研究, 青岛: 青岛大学, 2020
|
27 |
Bao R., Luo H., Liu L., Yi J., Tao J., Li C., Compos. Commun., 2023, 38, 101491
|
28 |
Sun Z., Feng L., Xiong C., He X., Wang L., Qin X., Yu J., J. Mater. Chem. A, 2021, 9, 7085—7093
|
29 |
Tan J., Fang S., Zhang Z., Yin J., Li L., Wang X., Guo W., Nat. Commun., 2022, 13, 3643
|
30 |
Zhu R., Zhu Y., Hu L., Guan P., Su D., Zhang S., Liu C., Feng Z., Hu G., Chen F., Wan T., Guan X., Wu T., Joshi R., Li M., Cazorla C., Lu Y., Han Z., Xu H., Chu D., Energ. Environ. Sci., 2023, 16, 2338—2345
|
31 |
Bai J., Huang Y., Wang H., Guang T., Liao Q., Cheng H., Deng S., Li Q., Shuai Z., Qu L., Adv. Mater., 2022, 34, 2103897
|
32 |
Bai J., Liao Q., Yao H., Guang T., He T., Cheng H., Qu L., Energ. Environ. Sci., 2023, 16, 3088—3097
|
33 |
Maity D., Fussenegger M., Adv. Sci., 2023, 10, 2300750
|
34 |
Xu T., Ding X., Huang Y., Shao C., Song L., Gao X., Zhang Z., Qu L., Energ. Environ. Sci., 2019, 12, 972—978
|
35 |
Nie X., Ji B., Chen N., Liang Y., Han Q., Qu L., Nano Energy, 2018, 46, 297—304
|
36 |
Duan W., Shao B., Wang Z., Ni K., Liu S., Yuan X., Wang Y., Sun B., Zhang X., Liu R., Energ. Environ. Sci., 2024, 17, 3788—3796
|
37 |
Wu P., Chen Y., Luo Y., Ji W., Wang Y., Qian Z., Duan Y., Li X., Fu S., Gao W., Liu D., ACS Appl. Mater. Interfaces, 2024, 16, 32198—32208
|
38 |
Shen D., Xiao M., Zou G., Liu L., Duley W. W., Zhou Y. N., Adv. Mater., 2018, 30, 1705925
|
39 |
Qin Y., Wang Y., Sun X., Li Y., Xu H., Tan Y., Li Y., Song T., Sun B., Angew. Chem. Inter. Ed., 2020, 59, 10619—10625
|
40 |
Yang S., Zhang L., Mao J., Guo J., Chai Y., Hao J., Chen W., Tao X., Nat. Commun., 2024, 15, 3329
|
41 |
Huang Y., Cheng H., Qu L., ACS Mater. Lett., 2021, 3, 193—209
|
42 |
Bai J. X., Huang Y. X., Wang H. Y., Guang T. L., Liao Q. H., Cheng H. H., Deng S. H., Li Q. K., Shuai Z. G., Qu L. T., Adv. Mater., 2022, 34, 2103897
|
43 |
Xu T., Ding X., Cheng H., Han G., Qu L., Adv. Mater., 2024, 36, 2209661
|
44 |
Xu Y., Li Z., Shi C., Li Y., Lei Y., Peng G., Yu T., Ren H., Wang H., Fan H., Zhang Y., Ci Z., Wang Q., Jin Z., Adv. Mater., 2024, 36, 2406128
|
45 |
Wang H., Sun Y., He T., Huang Y., Cheng H., Li C., Xie D., Yang P., Zhang Y., Qu L., Nat. Nanotech., 2021, 16, 811—819
|
46 |
Yang S., Zhang L., Mao J., Guo J., Chai Y., Hao J., Chen W., Tao X., Nat. Commun., 2024, 15, 3329
|
47 |
Bai J., Huang Y., Cheng H., Qu L., Nanoscale, 2019, 11, 23083—23091
|
48 |
Duan Z., Yuan Z., Jiang Y., Zhao Q., Huang Q., Zhang Y., Liu B., Tai H., Chem. Eng. J., 2022, 446, 136910
|
49 |
Gao K., Sun J., Lin X., Li Y., Sun X., Chen N., Qu L., J. Mater. Chem. A, 2021, 9, 24488—24494
|
50 |
He W., Li P., Wang H., Hu Y., Lu B., Weng C., Cheng H., Qu L., ACS Nano, 2024, 18, 12096—12104
|
/
〈 |
|
〉 |