
前驱体结构调控策略制备碳点基多色室温磷光材料
刘金坤, 冉准, 刘青青, 刘应亮, 庄健乐, 胡超凡
前驱体结构调控策略制备碳点基多色室温磷光材料
Preparation of Carbon Dot-based Multicolor Room-temperature Phosphorescent Materials via Precursor Structure Regulation Strategies
提出了一种简单易行的前驱体分子结构调控策略, 以Al2O3作为基质, 不同结构的小分子为有机前驱体, 通过原位煅烧法制备了磷光发射颜色覆盖可见光区的碳点基复合材料. 通过透射电子显微镜、 傅里叶变换红外光谱、 X射线衍射和X射线电子能谱表征证明了碳点生长在Al2O3基质内部. 荧光光谱测试结果表明, 4种CDs@Al2O3复合材料的磷光颜色分别为蓝色(454 nm)、 绿色(520 nm)、 橙色(572 nm)和红色(632 nm), 平均寿命分别为130.6, 293.6, 498.6和539.0 ms. 随着前驱体中π共轭度及含氧官能团数量的增加, 碳点激发态与基态之间的能隙变小, 引起磷光发射波长红移, 从而实现多色磷光发射的调控. 基于该材料多色室温磷光特性, 初步探究了其在防伪和信息加密方面的应用效果.
In this paper, a simple precursor molecular structure regulation strategy was presented, and carbon dot-based composites with phosphorescent emission colors covering the visible light spectrum were prepared through an in situ calcination method using Al2O3 as a matrix and various small molecules as organic precursors. Transmission electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy confirmed the successful growth of carbon dots within the Al2O3 matrix. Fluorescence spectroscopy tests indicated that the phosphorescent colors of the four CDs@Al2O3 composites were blue(454 nm), green(520 nm), orange(572 nm), and red(632 nm), with average lifetimes of 130.6, 293.6, 498.6, and 539.0 ms, respectively. The observed redshift in phosphorescent emission wavelength attributed to the decrease in the energy gap between the excited state and ground state of the carbon dots with increasing π-conjugation and number of oxygen-containing functional groups in the precursor, which achieved the modulation of multicolor phosphorescent emissions. Based on the multicolor room-temperature phosphorescent characteristics of this material, its applications in anti-counterfeiting and information encryption was preliminarily explored.
Carbon dots / Room temperature phosphorescence / Long afterglow / Al2O3
O631
1 |
Liu H. X., Zhong X., Pan Q., Zhang Y., Deng W. T., Zou G. Q., Hou H. S., Ji X. B., Coord. Chem. Rev., 2024, 498, 215468
|
2 |
Ðorđević L., Arcudi F., Cacioppo M., Prato M., Nat. Nanotechnol., 2022, 17(2), 112—130
|
3 |
Sun Y. Q., Liu S. T., Sun L. Y., Wu S. S., Hu G. Q., Pang X. L., Smith A., Hu C. F., Zeng S. S., Wang W. X., Nat. Commun., 2020, 11(1), 5591
|
4 |
Wareing T., Gentile P., Phan A., ACS Nano, 2021, 15(10), 15471—15501
|
5 |
Li W., Zhou W., Zhou Z. S., Zhang H. R., Zhang X. J., Zhuang J. L., Liu Y. L., Lei B. F., Hu C. F., Angew. Chem. Int. Ed., 2019, 131(22), 7356—7361
|
6 |
Li J., Zhou H., Jin S., Xu B., Teng Q., Li C. H., Li J. S., Li Q. J., Gao Z. H., Zhu C. F., Adv. Mater., 2024, 36(24), 2401493
|
7 |
Geng B. J., Hu J. Y., Li Y., Feng S. N., Pan D. Y., Feng L. Y., Shen L. X., Nat. Commun., 2022, 13(1), 5735
|
8 |
Yu X. W., Liu K. K., Wang B. L., Zhang H. Y., Qi Y. Y., Yu J. H., Adv. Mater., 2023, 35(6), 2208735
|
9 |
Wang B. Y., Lu S. Y., Matter, 2022, 5(1), 110—149
|
10 |
Ran Z., Liu J. K., Zhuang J. L., Liu Y. L., Hu C. F., Small Methods, 2024, 8(1), 2301013
|
11 |
Zhou S. J., Wang F. X., Feng N., Xu A. X., Sun X. F., Zhou J., Li H. G., Small, 2023, 19(33), 2301240
|
12 |
Lou Q., Chen N., Zhu J. Y., Liu K. K., Li C., Zhu Y. S., Xu W., Chen X., Song Z. J., Liang C. H., Adv. Mater., 2023, 35(20), 2211858
|
13 |
Xia C. L., Zhu S. J., Zhang S. T., Zeng Q. S., Tao S. Y., Tian X. Z., Li Y. F., Yang B., ACS Appl. Mater. Interfaces, 2020, 12(34), 38593—38601
|
14 |
Li Q. J., Cheng D. K., Gu H. L., Yang D. Q., Li Y. C., Meng S., Zhao Y. Y., Tang Z. K., Zhang Y. B., Tan J., Chem. Eng. J., 2023, 462, 142339
|
15 |
Wang B. L., Mu Y., Zhang H. Y., Shi H. Z., Chen G. R., Yu Y., Yang Z. Q., Li J. Y., Yu J. H., ACS Cent. Sci., 2019, 5(2), 349—356
|
16 |
Mo L. Q., Liu H., Liu Z. M., Xu X. K., Lei B. F., Zhuang J. L., Liu Y. L., Hu C. F., Adv. Opt. Mater., 2022, 10(10), 2102666
|
17 |
He Z. G., Sun Y. D., Zhang C., Zhang J., Liu S. J., Zhang K., Lan M. H., Carbon, 2023, 204, 76—93
|
18 |
Zhang Y. Q., Chen L., Liu B., Yu S. P., Yang Y. Z., Liu X. G., Adv. Funct. Mater., 2024, 34(25), 2315366
|
19 |
Ding Z. Z., Shen C. L., Han J. F., Zheng G. S., Ni Q. C., Song R. W., Liu K. K., Zang J. H., Dong L., Lou Q., Small, 2023, 19(31), 2205916
|
20 |
Wang B. Y., Waterhouse G., Lu S. Y., Trends Chem., 2023, 5(1), 76—87
|
21 |
Kumari R., Kumar A., Negi K., Sahu S., ACS Appl. Nano Mater., 2023, 6(2), 918—929
|
22 |
Shi H. X., Niu Z. J., Wang H., Ye W. P., Xi K., Huang X., Wang H. L., Liu Y. F., Lin H. W., Shi H. F., An Z. F., Chem. Sci., 2022, 13(15), 4406—4412
|
23 |
Tan J., Yi Z. Z., Ye Y. X., Ren X. D., Li Q. J., J. Lumin., 2020, 223, 117267
|
24 |
Patra A., Dutta A., Bhaumik A., J. Hazard. Mater., 2012, 201, 170—177
|
25 |
Sun W. X., Zhang Y. Q., Yin G. C., Lu S. Y., Adv. Funct. Mater., 2024, 34(37), 2402346
|
26 |
Liu Y. P., Wang B. Z., Zhang Y. S., Guo J., Wu X. Y., OuYang D. F., Chen S., Chen Y. Q., Wang S. P., Xing G. C., Adv. Funct. Mater., 2024, 2401353
|
27 |
Ge W. Y., Zhang P. F., Zhang X. M., Gao W. X., Lu C. H., Ge Y., ACS Sustainable Chem. Eng., 2021, 9(30), 10220—10226
|
28 |
Ai L., Song Z. Q., Nie M. J., Yu J. K., Liu F. K., Song H. Q., Zhang B., Waterhouse G., Lu S.Y., Angew. Chem. Int. Ed., 2023, 62(12), e202217822
|
29 |
Li C. C., Zhao X. Y., Li C., Hu J. H., Zhu J. Y., Lou Q., Chen N., Song Z. J., Chen X., Pan G. C., J. Alloys Compd., 2023, 948, 169674
|
30 |
Arcudi F., Đorđević L., Prato M., Angew. Chem. Int. Ed., 2017, 129(15), 4234—4237
|
31 |
He J. L., Chen Y. H., He Y. L., Xu X. K., Lei B. F., Zhang H. R., Zhuang J. L., Hu C. F., Liu Y. L., Small, 2020, 16(49), 2005228
|
32 |
Song Z. J., Liu Y. L., Lin X. M., Zhou Z. S., Zhang X. J., Zhuang J. L., Lei B. F., Hu C. F., ACS Appl. Mater. Interfaces, 2021, 13(29), 34705—34713
|
33 |
Wan Z. J., Li Y. M., Zhou Y. Z., Peng D. P., Zhang X. J., Zhuang J. L., Lei B. F., Liu Y. L., Hu C. F., Adv. Funct. Mater., 2023, 33(11), 2207296
|
34 |
Han Y., Li M., Lai J. W., Li W. T., Liu Y. J., Yin L. Q., Yang L. Q., Xue X. G., Vajtai R., Ajayan P., ACS Sustainable Chem. Eng., 2019, 7(24), 19918—19924
|
35 |
Wang B. Y., Wang H. W., Hu Y. S., Waterhouse G., Lu S. Y., Nano Lett., 2024, 24(9), 2904—2911
|
36 |
Liu J. K., Luo Y. M., Ran Z., Wang F. L., Sun M. H., Luo Y. Y., Zhuang J. L., Zhang X. J., Lei B. F., Liu Y. L., Hu C. F., Chem. Eng. J., 2023, 474, 145597
|
37 |
Zhou Z. S., Song Z. J., Liu J. K., Lei B. F., Zhuang J. L., Zhang X. J., Liu Y. L., Hu C. F., Adv. Opt. Mater., 2022, 10(1), 2100704
|
38 |
Wu Y. C., Sun L. L., Han H. H., He X. P., Cao W. G., James T., Chem. Sci., 2024, 15(2), 757—764
|
39 |
Liang P., Zheng Y. H., Zhang X. C., Wei H. P., Xu X. K., Yang X. F., Lin H. H., Hu C. F., Zhang X. J., Lei B. F., Nano Lett., 2022, 22(13), 5127—5136
|
40 |
Lu D., Lu K., Wen H. T., Wei Z., Bianco A., Wang G. G., Zhang H. Y., Small, 2023, 19(31), 2207046
|
/
〈 |
|
〉 |