
基于红光碳点光敏剂的活性收缩水凝胶用于细菌感染的伤口愈合
郝永梁, 李建, 王泽华, 葛介超
基于红光碳点光敏剂的活性收缩水凝胶用于细菌感染的伤口愈合
Active Shrinkage Hydrogel Based on Red Emissive Carbon Dots Photosensitizers for Bacterial Infected Wound Healing
以N-异丙基丙烯酰胺(NIPAM)、 海藻酸钠(SA)和碳点(CDs)光敏剂为主要原料, 通过自由基聚合和钙离子交联的方法制备了一种基于红光碳点光敏剂的活性收缩水凝胶(PNSP Gel), 用于细菌感染的伤口愈合. PNSP Gel可在体温下(37 ℃)通过活性收缩作用释放出CDs光敏剂, 进一步通过CDs光敏剂的光动力抗菌作用, 有效杀灭伤口部位的细菌, 促进伤口快速愈合. 研究结果表明, PNSP Gel具有良好的释药性能、 光动力抗菌性能以及加速伤口愈合的能力, 为临床伤口管理提供了新的解决方案.
An active shrinkage hydrogel based on red emissive carbon dots(CDs) photosensitizers(PSs) was developed for bacterial infected wound healing. The hydrogel was prepared by using N-isopropylacrylamide (NIPAM), sodium alginate(SA) and CDs PSs as precursors through free radical polymerization and calcium ion cross-linking. The hydrogel could release CDs PSs at body temperature(37 ℃) due to the active shrinkage of the hydrogel. Upon light irradiation, the released CDs PSs can generate singlet oxygen to kill bacteria effectively in the wound site leading to rapid wound healing. In vitro and in vivo results suggest that the developed active shrinkage hydrogel has good drug release, photodynamic antibacterial effects and the ability to accelerate wound healing, thus providing a new type of hydrogel for clinical wound management.
Carbon dots / Photodynamic antibacterial / Hydrogel / Wound healing
O636
1 |
Peate I., British J. Healthcare Assistants, 2021, 15(9), 446—451
|
2 |
Harth W., Kanerva’s Occupational Dermatology, 2020, 1209—1221
|
3 |
Nethi S. K., Das S., Patra C. R., Mukherjee S., Biomater. Sci., 2019, 7(7), 2652—2674
|
4 |
Jia Y., Zhang X., Yang W., Lin C., Tao B., Deng Z., Gao P., Yang Y., Cai K., J. Mater. Chem. B, 2022, 10(15), 2875—2888
|
5 |
Rezaie F., Momeni⁃Moghaddam M., Naderi⁃Meshkin H., Int. J. Low. Extr. Wound, 2019, 18(3), 247—261
|
6 |
Xue M., Jackson C. J., Adv. Wound. Care, 2015, 4(3), 119—136
|
7 |
Enoch S., Leaper D. J., Surgery(Oxford), 2008, 26(2), 31—37
|
8 |
Kalelkar P. P., Riddick M., García A. J., Nat. Rev. Mater, 2022, 7(1), 39—54
|
9 |
Noor A., Afzal A., Masood R., Khaliq Z., Ahmad S., Ahmad F., Qadir M.-B., Irfan M., J. Mater. Sci., 2022, 57(12), 6536—6572
|
10 |
Huangfu Y., Li S., Deng L., Zhang J., Huang P., Feng Z., Kong D., Wang W., Dong A., ACS Appl. Mater. Interfaces, 2021, 13(50), 59695—59707
|
11 |
Wang W., Jia B., Xu H., Li Z., Qiao L., Zhao Y., Huang H., Zhao X., Guo B., Chem. Eng. J, 2023, 468, 143362
|
12 |
Yuan Y., Shen S., Fan D., Biomaterials, 2021, 276, 120838
|
13 |
Sun X., Ding C., Qin M., Li J., Small, 2024, 20(11), 2306960
|
14 |
Wang Z., Du B., Gao X., Huang Y., Li M., Yu Z., Li J., Shi X., Deng Y., Liang K., Nano Today, 2022, 46, 101595
|
15 |
Chen J., Liu Y., Cheng G., Guo J., Du S., Qiu J., Wang C., Li C., Yang X., Chen T., Small, 2022, 18(27), 2201300
|
16 |
Chua M. H., Chin K. L. O., Loh X. J., Zhu Q., Xu J., ACS Nano, 2023, 17(3), 1845—1878
|
17 |
Zhu H., Zheng J., Oh X. Y., Chan C. Y., Low B. Q. L., Tor J. Q., Jiang W., Ye E., Loh X. J., Li Z., ACS Nano, 2023, 17(9), 7953—7978
|
18 |
Lee C. H., Song S. Y., Chung Y. J., Choi E. K., Jang J., Lee D. H., Kim H. D., Kim D. U., Park C. B., ACS Appl. Bio. Mater., 2022, 5(2), 761—770
|
19 |
Song W., Wang X., Nong S., Wang M., Kang S., Wang F., Xu L., Adv. Funct. Mater., 2024, 2402761
|
20 |
Ge J., Jia Q., Liu W., Lan M., Zhou B., Guo L., Zhou H., Zhang H., Wang Y., Gu Y., Meng X., Wang P., Adv. Healthc. Mater., 2016, 5(6), 665—675
|
21 |
Ge J., Lan M., Zhou B., Liu W., Guo L., Wang H., Jia Q., Niu G., Huang X., Zhou H., Meng X., Wang P., Lee C. S., Zhang W., Han X., Nat. Commun., 2014, 5, 4596
|
22 |
Chen T., Yao T., Peng H., Whittaker A. K., Li Y., Zhu S., Wang Z., Adv. Funct. Mater., 2021, 31(45), 2106079
|
23 |
Liu M., Huang L., Xu X., Wei X., Yang X., Li X., Wang B., Xu Y., Li L., Yang Z., ACS Nano, 2022, 16(6), 9479—9497
|
24 |
Mou C., Wang X., Teng J., Xie Z., Zheng M., J. Nanobiotechnology, 2022, 20(1), 368
|
25 |
Ge J., Jia Q., Liu W., Guo L., Liu Q., Lan M., Zhang H., Meng X., Wang P., Adv. Mater., 2015, 27(28), 4169—4177
|
26 |
Cheng W., Zeng X., Chen H., Li Z., Zeng W., Mei L., Zhao Y., ACS Nano, 2019, 13, 8537
|
27 |
Ge J., Lan M., Liu W., Jia Q., Guo L., Zhou B., Meng X., Niu G., Wang P., Sci. China Mater., 2016, 59(1), 12—19
|
28 |
Hu J., Wei T., Zhao H., Chen M., Tan Y., Ji Z., Jin Q., Shen J., Han Y., Yang N., Chen L., Xiao Z., Zhang H., Liu Z., Chen Q., Matter, 2021, 4(9), 2985—3000
|
29 |
Dharmasiri M. B., Mudiyanselage T. K., Polym. Bull., 2021, 78, 3183—3198
|
30 |
Xiao L., Feng M., Chen C., Xiao Q., Cui Y., Zhang Y., Adv. Mater., 2023, 2304982
|
31 |
Wang Y., Chen P., Liu W., Wei X., Zhang J., Wei X., Liu Y., Rao L., Zhang S., Yu J., Ye X., Wang J., Gu Z., Nano Today, 2023, 51, 101937
|
32 |
Sun J., Jia W., Qi H., Huo J., Liao X., Xu Y., Wang J., Sun Z., Liu Y., Liu J., Zhen M., Wang C., Bai C., Adv. Mater., 2024, 2312440
|
33 |
Shou Y., Le Z., Cheng H. S., Liu Q., Ng Y. Z., Becker D. L., Li X., Liu L., Xue C., Yeo N. J. Y., Tan R., Low J., Kumar A. R. K., Wu K. Z., Li H., Cheung C., Lim C. T., Tan N. S., Chen Y., Liu Z., Tay A., Adv. Mater., 2023, 35(47), 2304638
|
/
〈 |
|
〉 |