
基于聚集调控的多色碳纳米点荧光粉
赖晓南, 沈成龙, 单崇新
基于聚集调控的多色碳纳米点荧光粉
Aggregation Regulation-assisted Multicolor Carbon Nanodots Fluorescent Phosphor
以柠檬酸和尿素为原料, N,N-二甲基甲酰胺为溶剂, 采用溶剂热法制备了具有浓度依赖性的荧光碳纳米点. 用去离子水对碳纳米点原液进行不同倍数的稀释, 发现随着稀释倍数的增加, 碳纳米点之间的能量传递逐渐减弱, 其荧光颜色逐渐从红色转为蓝色, 发射强度逐渐增强. 使用层析分离技术研究了浓度对碳纳米点荧光发射特性的影响, 结果表明, 碳纳米点原液具有不同荧光颜色的碳纳米点组分, 碳纳米点之间的福斯特共振能量转移和吸收再发射的能量传递导致不同浓度碳纳米点溶液荧光发射的变化. 基于此, 以淀粉为限域基质, 通过调节基质中碳纳米点的浓度, 实现了多色碳纳米点荧光粉的精确调控. 研究结果为碳纳米点的光学调控提供了新思路, 为其在荧光标记和显示技术等领域的应用提供了可能性.
Carbon nanodots(CDs) with concentration-dependent fluorescence were synthesized with citric acid and urea as precursors in N,N-dimethylformamide through solvothermal strategy. The CDs solution was diluted with deionized water at various ratios. The energy transfer between the CDs particles gradually weakened when the dilution ratio increased, leading to a shift in fluorescence color from red to blue and an enhancement in emission intensity. A systematic investigation on the concentration effects on the fluorescence emission properties of CDs were conducted with a chromatography separation techniques, revealing that the as-prepared CDs solution contained the multicolor components and the fluorescence variations in CDs solutions were attributed to Förster resonance energy transfer and reabsorption energy transfer. Thus, the precise regulation of multicolor CDs phosphors was further achieved with the starch as confined matrix to regulate the energy transfer between CDs. These findings present a new strategy to regulate the optical properties of CDs and pave a new insight the applications of fluorescence labeling and display technology.
Carbon nanodots / Multicolor / Fluorescence / Aggregation regulation / Phosphors
O613.71
1 |
Shi Y., Su W., Yuan F., Yuan T., Song X., Han Y., Wei S., Zhang Y., Li Y., Li X., Fan L., Adv. Mater., 2023, 35(44), 2210699
|
2 |
Li L., Dong T. J., Mater. Chem. C, 2018, 6, 7944—7970
|
3 |
Xia C., Zhu S., Feng T., Yang M., Yang B., Adv. Sci., 2019, 6(23), 1901316
|
4 |
Ghosh D., Sarkar K., Devi P., Kim K. H., Kumar, P., Renew. Sust. Energy Rev., 2021, 135, 110391
|
5 |
Shen C. L., Lou Q., Liu K. K., Dong L., Shan C. X., Nano Today, 2020, 35, 100954
|
6 |
Omar N. A. S., Fen Y. W., Irmawati R., Hashim H. S., Ramdzan N. S. M., Fauzi N. I. M., Nanomaterials, 2022, 12(14), 2365
|
7 |
Ghaffarkhah A., Hosseini E., Kamkar M., Sehat A. A., Dordanihaghighi S., Allahbakhsh A., van der Kuur C., Arjmand M., Small, 2022, 18(2), 2102683
|
8 |
Tan J., Li Q., Meng S., Li Y., Yang J., Ye Y., Tang Z., Qu S., Ren X., Adv. Mater., 2021, 33(16), 2006781
|
9 |
Lim S. Y., Shen W., Gao, Z., Chem. Soc. Rev., 2015, 44(1), 362—381
|
10 |
Zhang J., Chen X., Li Y., Han S., Du Y., Liu H., Anal. Methods, 2018, 10(5), 541—547
|
11 |
Fan X., Su Y., Deng D., Lv Y., RSC Adv., 2016, 6(80), 76890—76896
|
12 |
Zhao W. B., Liu K. K., Song S. Y., Zhou R., Shan C. X., Nanoscale Res. Lett., 2019, 14(1), 130
|
13 |
Shen C. L., Su L. X., Zang J. H., Li X. J., Lou Q., Shan C. X., Nanoscale Res. Lett., 2017, 12(1), 447
|
14 |
Bao R., Wang C., Dong L., Shen C., Zhao K., Pan C., Nanoscale, 2016, 8(15), 8078—8082
|
15 |
Lai S., Jin Y., Shi L., Zhou R., Zhou Y., An D., Nanoscale, 2020, 12(2), 591—601
|
16 |
Song R. W., Shen C. L., Zheng G. S., Ni Q. C., Liu K. K., Zang J. H., Dong L., Lou Q., Shan C. X., Nano Lett., 2023, 23(24), 11669—11677
|
17 |
Yang H., Liu Y., Guo Z., Lei B., Zhuang J., Zhang X., Liu Z., Hu C., Nat. Commun., 2019, 10(1), 1789
|
18 |
Strauss V., Wang H., Delacroix S., Ledendecker M., Wessig P., Chem. Sci., 2020, 11(31), 8256—8266
|
19 |
Siddique A. B., Hossain S. M., Pramanick A. K., Ray M., Nanoscale, 2021, 13(39), 16662—16671
|
20 |
Sk M. A., Ananthanarayanan A., Huang L., Lim K. H., Chen P., J. Mater. Chem. C, 2014, 2(34), 6954—6960
|
21 |
Liu Y., Han S., New J. Chem., 2018, 42(1), 388—394
|
22 |
Chen P. C., Chen Y. N., Hsu P. C., Shih C. C., Chang H. T., Chem. Commun., 2013, 49(16), 1639—1641
|
23 |
Qu S., Zhou D., Li D., Ji W., Jing P., Han D., Liu L., Zeng H., Shen D., Adv. Mater., 2016, 28(18), 3516—3521
|
24 |
Kang C., Prodanov M. F., Gao Y., Mallem K., Yuan Z., Vashchenko V. V., Srivastava A. K., Adv. Mater., 2021, 33(49), 2104685
|
25 |
Ding H., Yu S. B., Wei J. S., Xiong H. M., ACS Nano, 2016, 10(1), 484—491
|
26 |
Shen R., He T., Yao S., Zhang Y., Peng T., Tan W., Chen N., Yuan Q., Small Methods, 2024, 8(12), 122400439
|
27 |
Zhu S., Song Y., Zhao X., Shao J., Zhang J., Yang B., Nano Res., 2015, 8(2), 355—381
|
28 |
Zheng M., Wang Y., Hu D., Tian M., Wei Y., Yuan J., Aggregate, 2024, 5(6), e624
|
29 |
Dimos K., Curr. Org. Chem., 2016, 20(6), 682—695
|
30 |
Chen Y., Lian H., Wei Y., He X., Chen Y., Wang B., Zeng Q., Lin J., Nanoscale, 2018, 10(14), 6734—6743
|
31 |
Mintz K. J., Zhou Y., Leblanc R. M., Nanoscale, 2019, 11(11), 4634—4652
|
32 |
Zhong J., Zhu Y., Xing M., Li M., Wu R., Zhang L., Guan W., Luminescence, 2024, 39(7), e4827
|
/
〈 |
|
〉 |