碳点调控混合相钛酸钠的储钠性能

李丹, 胡鸿辉, 侯红帅, 张生, 刘立杰, 景明俊, 吴天景

PDF(2112 KB)
PDF(2112 KB)
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (6) : 95-106. DOI: 10.7503/cjcu20240356
研究论文

碳点调控混合相钛酸钠的储钠性能

作者信息 +

Sodium Storage Performance of Mixed-phase Sodium Titanate Tuned by Carbon Dots

Author information +
History +

摘要

Na2Ti3O7和Na2Ti6O13是两种典型的钛基储钠材料, 分别具有理论容量高和结构稳定性好的优点, 而调控两者在复合材料中的占比是更好发挥其电化学性能的关键. 基于碳点比表面积大、 表面官能团丰富等优势, 本文利用一步水热法, 原位制得了含碳点的钛酸钠前驱体. 经过后续的热转换处理, 可获得含由碳点衍生而来的导电碳的Na2Ti3O7和Na2Ti6O13复合材料(NNTO/C). 导电碳的引入对混合相的组分比例进行了调控, 还为复 合材料提供了小电荷转移阻抗(R ct, 7.48 Ω)和大比表面积(100.8 m2/g), 使得NNTO/C发挥混合相协同互补作 用的同时, 展现出更好的储钠行为. 将其用作负极时, NNTO/C在0.05 A/g的电流密度下循环超200次, 仍有143.8 mA‧h/g的比容量, 并在1.00 A/g的大电流下循环400次后展现出108 mA‧h/g的比容量. 本研究为电极材料两相结构的设计及碳点在储能方面的拓展应用给予了新思路.

Abstract

Na2Ti3O7 and Na2Ti6O13 are two typical titanate-based sodium-storage materials, featuring the high theoretical capacity and favorable structure stability, respectively. Regulating the ratio of them in the composite material is the key to strengthen its electrochemical characteristics. Herein, based on the high specific surface area and abundant surface functional groups of carbon dots(CDs), sodium titanate precursors containing CDs were in situ prepared by one-step hydrothermal method. After the thermal conversion of the precursors, a composite material(NNTO/C) of Na2Ti3O7 and Na2Ti6O13 was obtained, containing conductive carbon derived from CDs. The introduction of conductive carbon not only adjusts the composition ratio of the mixed phases, but also provides a small charge transfer impedance(R ct, 7.48 Ω) and a big specific surface area(100.8 m2/g). As a result, NNTO/C composites exhibit better sodium storage behavior while playing the synergistic interaction of mixed phases. When employed as the anode, after 200 cycles at 0.05 A/g, NNTO/C still maintains a specific capacity of 143.8 mA‧h/g. After 400 cycles at 1.00 A/g, the specific capacity remains as high as 108 mA‧h/g. This study suggests an innovative thinking for designing two-phase structures of electrode materials and the greater use of CDs in electrochemical energy storage.

关键词

Na2Ti3O7 / Na2Ti6O13 / 混合相 / 碳点 / 储钠行为

Key words

Na2Ti3O7 / Na2Ti6O13 / Mixed-phases / Carbon dots / Sodium storage behavior

引用本文

导出引用
李丹 , 胡鸿辉 , 侯红帅 , . 碳点调控混合相钛酸钠的储钠性能. 高等学校化学学报. 2025, 46(6): 95-106 https://doi.org/10.7503/cjcu20240356
LI Dan, HU Honghui, HOU Hongshuai, et al. Sodium Storage Performance of Mixed-phase Sodium Titanate Tuned by Carbon Dots[J]. Chemical Journal of Chinese Universities. 2025, 46(6): 95-106 https://doi.org/10.7503/cjcu20240356

参考文献

1
Zhu Z. X., Jiang T. L., Ali M., Meng Y. H., Jin Y., Cui Y., Chen W., Chem. Rev., 2022122(22), 16610—16751
2
Wu N. T., Zhao Z. B., Hua R., Wang X. T., Zhang Y. M., Li J., Liu G. L., Guo D. L., Sun G., Liu X. M., Zhang J. W., Adv. Energy Mater., 2024, 2400371
3
Zhu Y. R., Zhong W. P., Chen W. H., Hu Z. L., Xie Y. J., Deng W. T., Hou H. S., Zou G. Q., Ji X. B., Nano Energy 2024125, 109524
4
Zhu Z. X., Zhang X., Wang M. M., Chen W., Chem. J. Chinese Universities 202142(5), 1610—1618
朱正新, 张翔, 王明明, 陈维. 高等学校化学学报, 202142(5), 1610—1618
5
Zhang J. Y., Yan Y. L., Wang X., Cui Y. Y., Zhang Z. F., Wang S., Xie Z. K., Yan P. F., Chen W. H., Nat. Commun. 202314(1), 3701
6
Jiang Y. M., Zhang Z., Liao H. Y., Zheng Y. F., Fu X. T., Lu J. N., Cheng S. Y., Gao Y. H., ACS Nano 202418(11), 7796—7824
7
Wang J. L., Hu J. Y., Kang F. Y., Zhai D. Y., Energy Environ. Sci. 202417(9), 3202—3209
8
Dong S. Y., Lv N., Wu Y. L., Zhang Y. Z., Zhu G. Y., Dong X. C., Nano Today 202242, 101349
9
Dong J., Jiang Y. L., Wang R. X., Wei Q. L., An Q. Y., Zhang X. X., J. Energy Chem. 202488, 446—460
10
Lai Q. S., Mu J. J., Liu Z. M., Zhao L. K., Gao X. W., Yang D. R., Chen H., Luo W. B., Batteries & Supercaps 20236(4), e202200549
11
Wu C. J., Hua W. B., Zhang Z., Zhong B. H., Yang Z. G., Feng G. L., Xiang W., Wu Z. G., Guo X. D., Adv. Sci. 20185(9), 1800519
12
Cao K. Z., Jiao L. F., Pang W. K., Liu H. Q., Zhou T. F., Guo Z. P., Wang Y. J., Yuan H. T., Small 201612(22), 2991—2997
13
Que L. F., Yu F. D., Zheng L. L., Wang Z. B., Gu D. M., Nano Energy 201845, 337—345
14
Zhao R., Liu C., Zhu Y. R., Zou G. Q., Hou H. S., Ji X. B., Adv. Funct. Mater. 2024, 231664
15
Mei J., Wang T. T., Qi D. C., Liu J. J., Liao T., Yamauchi Y. K., Sun Z. Q., ACS Nano 202115(8), 13604—13615
16
Cech O., Vanýsek P., Chladil L., Castkova K., ECS Transactions 201674(1), 331—337
17
Chandel S., Lee S., Lee S., Kim S. J., Singh S. P., Kim J., Rai A. K., J. Electroanal. Chem. 2020877, 114747
18
Hwang J., Setiadi Cahyadi H., Chang W.Y., Kim J., J. Supercrit. Fluid 2019148, 116—129
19
Mintz K. J., Bartoli M., Rovere M., Zhou Y. Q., Hettiarachchi S. D., Paudyal S., Chen J. Y., Domena J. B., Liyanage P. Y., Sampson R., Khadka D., Pandey R. R., Huang S. X., Chusuei C. C., Tagliaferro A., Leblanc R. M., Carbon 2021173, 433—447
20
Zhai Y. P., Zhang B. W., Shi R., Zhang S. Y., Liu Y. A., Wang B. Y., Zhang K., Waterhouse G. I. N., Zhang T. R., Lu S. Y., Adv. Energy Mater. 202112(6), 2103426
21
El⁃Azazy M., Osman A. I., Nasr M., Ibrahim Y., Al⁃Hashimi N., Al⁃Saad K., Al⁃Ghouti M. A., Shibl M. F., Al⁃Muhtaseb A. A. H., Rooney D. W., El⁃Shafie A. S., Coord. Chem. Rev. 2024517, 215976
22
Song H. Q., Wu M., Tang Z. Y., Tse J. S., Yang B., Lu S. Y., Angew. Chem. Int. Ed. 202160(13), 7234—7244
23
Yun X. R., Li J. Y., Chen X. H., Chen H., Xiao L., Xiang K. X., Chen W. H., Liao H. Y., Zhu Y. R., ACS Appl. Mater. Interfaces 201911(40), 36970—36984
24
Jin Y. L., Wang Y. L., Ren P. G., Zhang B. F., Zhao Z. R., Hou X., Ren F., Chen Z. Y., Guo Z. Z., Yang H. J., Li X. F., J. Energy Storage 202485, 111118
25
Lee H. R., Kim Y. S., Lee S. Y., Son U. H., Lee S., Joh H. I., Appl. Surf. Sci. 2024664, 160228
26
Liu Z., Zhang S., Qiu Z. P., Huangfu C., Wang L., Wei T., Fan Z. J., Small 202016(38), 2003557
27
Wu M. H., Gao Y. P., Hu Y., Zhao B., Zhang H. J., Chin. Chem. Lett. 202031(3), 897—902
28
Liu F., Xu S. H., Gong W. B., Zhao K. T., Wang Z. M., Luo J., Li C. S., Xue P., Wang C. L., Wei L., Li Q. W., Zhang Q. C., ACS Nano 202317, 18494—18506
29
Li L., Li Y. T., Ye Y., Guo R. T., Wang A. N., Zou G. Q., Hou H. S., Ji X. B., ACS Nano 202115, 6872—6885
30
Zhong W., Tao M. L., Tang W. W., Gao W., Yang T. T., Zhang Y. Q., Zhan R. M., Bao S. J., Xu M. W., Chem. Eng. J. 2019378, 122209
31
Yin J., Qi L., Wang H. Y., ACS Appl. Mater. Interfaces20124, 2762—2768
32
Li P. X., Guo X., Zang R., Wang S. J., Zuo Y. Q., Man Z. M., Li P., Liu S. S., Wang G. X., Chem. Eng. J.2021418, 129501
33
Wang N., Xu X., Liao T., Du Y., Bai Z. C., Dou S. X., Adv. Mater.201830(49), 1804157
34
Pradeep A., Kumar B. S., Verma V., Kobi S., Nandakumar T., Mukhopadhyay A., Carbon2023201, 1—11
35
Shan H., Qin J., Ding Y. C., Sari H. M. K., Song X. X., Liu W., Hao Y. C., Wang J. J., Xie C., Zhang J. J., Li X. F., Adv. Mater.202133(37), 2102471

评论

PDF(2112 KB)

Accesses

Citation

Detail

段落导航
相关文章

/