
碳点调控混合相钛酸钠的储钠性能
李丹, 胡鸿辉, 侯红帅, 张生, 刘立杰, 景明俊, 吴天景
碳点调控混合相钛酸钠的储钠性能
Sodium Storage Performance of Mixed-phase Sodium Titanate Tuned by Carbon Dots
Na2Ti3O7和Na2Ti6O13是两种典型的钛基储钠材料, 分别具有理论容量高和结构稳定性好的优点, 而调控两者在复合材料中的占比是更好发挥其电化学性能的关键. 基于碳点比表面积大、 表面官能团丰富等优势, 本文利用一步水热法, 原位制得了含碳点的钛酸钠前驱体. 经过后续的热转换处理, 可获得含由碳点衍生而来的导电碳的Na2Ti3O7和Na2Ti6O13复合材料(NNTO/C). 导电碳的引入对混合相的组分比例进行了调控, 还为复 合材料提供了小电荷转移阻抗(R ct, 7.48 Ω)和大比表面积(100.8 m2/g), 使得NNTO/C发挥混合相协同互补作 用的同时, 展现出更好的储钠行为. 将其用作负极时, NNTO/C在0.05 A/g的电流密度下循环超200次, 仍有143.8 mA‧h/g的比容量, 并在1.00 A/g的大电流下循环400次后展现出108 mA‧h/g的比容量. 本研究为电极材料两相结构的设计及碳点在储能方面的拓展应用给予了新思路.
Na2Ti3O7 and Na2Ti6O13 are two typical titanate-based sodium-storage materials, featuring the high theoretical capacity and favorable structure stability, respectively. Regulating the ratio of them in the composite material is the key to strengthen its electrochemical characteristics. Herein, based on the high specific surface area and abundant surface functional groups of carbon dots(CDs), sodium titanate precursors containing CDs were in situ prepared by one-step hydrothermal method. After the thermal conversion of the precursors, a composite material(NNTO/C) of Na2Ti3O7 and Na2Ti6O13 was obtained, containing conductive carbon derived from CDs. The introduction of conductive carbon not only adjusts the composition ratio of the mixed phases, but also provides a small charge transfer impedance(R ct, 7.48 Ω) and a big specific surface area(100.8 m2/g). As a result, NNTO/C composites exhibit better sodium storage behavior while playing the synergistic interaction of mixed phases. When employed as the anode, after 200 cycles at 0.05 A/g, NNTO/C still maintains a specific capacity of 143.8 mA‧h/g. After 400 cycles at 1.00 A/g, the specific capacity remains as high as 108 mA‧h/g. This study suggests an innovative thinking for designing two-phase structures of electrode materials and the greater use of CDs in electrochemical energy storage.
Na2Ti3O7 / Na2Ti6O13 / 混合相 / 碳点 / 储钠行为
Na2Ti3O7 / Na2Ti6O13 / Mixed-phases / Carbon dots / Sodium storage behavior
1 |
Zhu Z. X., Jiang T. L., Ali M., Meng Y. H., Jin Y., Cui Y., Chen W., Chem. Rev., 2022, 122(22), 16610—16751
|
2 |
Wu N. T., Zhao Z. B., Hua R., Wang X. T., Zhang Y. M., Li J., Liu G. L., Guo D. L., Sun G., Liu X. M., Zhang J. W., Adv. Energy Mater., 2024, 2400371
|
3 |
Zhu Y. R., Zhong W. P., Chen W. H., Hu Z. L., Xie Y. J., Deng W. T., Hou H. S., Zou G. Q., Ji X. B., Nano Energy, 2024, 125, 109524
|
4 |
Zhu Z. X., Zhang X., Wang M. M., Chen W., Chem. J. Chinese Universities, 2021, 42(5), 1610—1618
朱正新, 张翔, 王明明, 陈维. 高等学校化学学报, 2021, 42(5), 1610—1618
|
5 |
Zhang J. Y., Yan Y. L., Wang X., Cui Y. Y., Zhang Z. F., Wang S., Xie Z. K., Yan P. F., Chen W. H., Nat. Commun., 2023, 14(1), 3701
|
6 |
Jiang Y. M., Zhang Z., Liao H. Y., Zheng Y. F., Fu X. T., Lu J. N., Cheng S. Y., Gao Y. H., ACS Nano, 2024, 18(11), 7796—7824
|
7 |
Wang J. L., Hu J. Y., Kang F. Y., Zhai D. Y., Energy Environ. Sci., 2024, 17(9), 3202—3209
|
8 |
Dong S. Y., Lv N., Wu Y. L., Zhang Y. Z., Zhu G. Y., Dong X. C., Nano Today, 2022, 42, 101349
|
9 |
Dong J., Jiang Y. L., Wang R. X., Wei Q. L., An Q. Y., Zhang X. X., J. Energy Chem., 2024, 88, 446—460
|
10 |
Lai Q. S., Mu J. J., Liu Z. M., Zhao L. K., Gao X. W., Yang D. R., Chen H., Luo W. B., Batteries & Supercaps, 2023, 6(4), e202200549
|
11 |
Wu C. J., Hua W. B., Zhang Z., Zhong B. H., Yang Z. G., Feng G. L., Xiang W., Wu Z. G., Guo X. D., Adv. Sci., 2018, 5(9), 1800519
|
12 |
Cao K. Z., Jiao L. F., Pang W. K., Liu H. Q., Zhou T. F., Guo Z. P., Wang Y. J., Yuan H. T., Small, 2016, 12(22), 2991—2997
|
13 |
Que L. F., Yu F. D., Zheng L. L., Wang Z. B., Gu D. M., Nano Energy, 2018, 45, 337—345
|
14 |
Zhao R., Liu C., Zhu Y. R., Zou G. Q., Hou H. S., Ji X. B., Adv. Funct. Mater., 2024, 231664
|
15 |
Mei J., Wang T. T., Qi D. C., Liu J. J., Liao T., Yamauchi Y. K., Sun Z. Q., ACS Nano, 2021, 15(8), 13604—13615
|
16 |
Cech O., Vanýsek P., Chladil L., Castkova K., ECS Transactions, 2016, 74(1), 331—337
|
17 |
Chandel S., Lee S., Lee S., Kim S. J., Singh S. P., Kim J., Rai A. K., J. Electroanal. Chem., 2020, 877, 114747
|
18 |
Hwang J., Setiadi Cahyadi H., Chang W.Y., Kim J., J. Supercrit. Fluid, 2019, 148, 116—129
|
19 |
Mintz K. J., Bartoli M., Rovere M., Zhou Y. Q., Hettiarachchi S. D., Paudyal S., Chen J. Y., Domena J. B., Liyanage P. Y., Sampson R., Khadka D., Pandey R. R., Huang S. X., Chusuei C. C., Tagliaferro A., Leblanc R. M., Carbon, 2021, 173, 433—447
|
20 |
Zhai Y. P., Zhang B. W., Shi R., Zhang S. Y., Liu Y. A., Wang B. Y., Zhang K., Waterhouse G. I. N., Zhang T. R., Lu S. Y., Adv. Energy Mater., 2021, 12(6), 2103426
|
21 |
El⁃Azazy M., Osman A. I., Nasr M., Ibrahim Y., Al⁃Hashimi N., Al⁃Saad K., Al⁃Ghouti M. A., Shibl M. F., Al⁃Muhtaseb A. A. H., Rooney D. W., El⁃Shafie A. S., Coord. Chem. Rev., 2024, 517, 215976
|
22 |
Song H. Q., Wu M., Tang Z. Y., Tse J. S., Yang B., Lu S. Y., Angew. Chem. Int. Ed., 2021, 60(13), 7234—7244
|
23 |
Yun X. R., Li J. Y., Chen X. H., Chen H., Xiao L., Xiang K. X., Chen W. H., Liao H. Y., Zhu Y. R., ACS Appl. Mater. Interfaces, 2019, 11(40), 36970—36984
|
24 |
Jin Y. L., Wang Y. L., Ren P. G., Zhang B. F., Zhao Z. R., Hou X., Ren F., Chen Z. Y., Guo Z. Z., Yang H. J., Li X. F., J. Energy Storage, 2024, 85, 111118
|
25 |
Lee H. R., Kim Y. S., Lee S. Y., Son U. H., Lee S., Joh H. I., Appl. Surf. Sci., 2024, 664, 160228
|
26 |
Liu Z., Zhang S., Qiu Z. P., Huangfu C., Wang L., Wei T., Fan Z. J., Small, 2020, 16(38), 2003557
|
27 |
Wu M. H., Gao Y. P., Hu Y., Zhao B., Zhang H. J., Chin. Chem. Lett., 2020, 31(3), 897—902
|
28 |
Liu F., Xu S. H., Gong W. B., Zhao K. T., Wang Z. M., Luo J., Li C. S., Xue P., Wang C. L., Wei L., Li Q. W., Zhang Q. C., ACS Nano, 2023, 17, 18494—18506
|
29 |
Li L., Li Y. T., Ye Y., Guo R. T., Wang A. N., Zou G. Q., Hou H. S., Ji X. B., ACS Nano, 2021, 15, 6872—6885
|
30 |
Zhong W., Tao M. L., Tang W. W., Gao W., Yang T. T., Zhang Y. Q., Zhan R. M., Bao S. J., Xu M. W., Chem. Eng. J., 2019, 378, 122209
|
31 |
Yin J., Qi L., Wang H. Y., ACS Appl. Mater. Interfaces, 2012, 4, 2762—2768
|
32 |
Li P. X., Guo X., Zang R., Wang S. J., Zuo Y. Q., Man Z. M., Li P., Liu S. S., Wang G. X., Chem. Eng. J., 2021, 418, 129501
|
33 |
Wang N., Xu X., Liao T., Du Y., Bai Z. C., Dou S. X., Adv. Mater., 2018, 30(49), 1804157
|
34 |
Pradeep A., Kumar B. S., Verma V., Kobi S., Nandakumar T., Mukhopadhyay A., Carbon, 2023, 201, 1—11
|
35 |
Shan H., Qin J., Ding Y. C., Sari H. M. K., Song X. X., Liu W., Hao Y. C., Wang J. J., Xie C., Zhang J. J., Li X. F., Adv. Mater., 2021, 33(37), 2102471
|
/
〈 |
|
〉 |