
利用固相合成的硼掺杂碳点调控锂负极的有序沉积
倪佳文, 黄遵辉, 宋天兵, 马千里, 何天乐, 张熙荣, 熊焕明
利用固相合成的硼掺杂碳点调控锂负极的有序沉积
Ordered Lithium Deposition on Lithium Metal Anode Controlled by Boron-doped Carbon Dots from Solid-state Synthesis
通过固相合成方法制备了一种硼掺杂的碳点(B-CDs), 并将其作为锂电池的电解液添加剂. 在空气中催化热解碳源制备碳点, 具有产量大、 产率高、 安全可控和操作方便等优点. 以间苯三酚和硼酸为原料合成的硼掺杂碳点, 在碳酸酯类电解液中具有良好的分散性. 掺杂的硼原子作为缺电子中心, 可通过路易斯酸碱作用结合含氟阴离子基团, 从而诱导锂离子均匀沉积到锂金属负极上. 当B-CDs的添加量为0.3 mg/mL时, 锂对称电池在电流为0.5 mA/cm2, 电沉积量为0.5 mA·h/cm2的测试条件下可稳定循环2500 h, 说明该碳点添加剂极大提升了锂沉积/溶解的可逆性. 使用B-CDs添加后的电解液组装磷酸铁锂全电池, 初始容量为144.4 mA·h/g, 100次循环后容量保留率可以达到95.1%.
Boron-doped carbon dots(B-CDs) synthesized via solid-phase method were employed as electrolyte additives for lithium metal batteries. The carbon dots were prepared through the catalytic pyrolysis of carbon sources in air, highlighting high yield, efficiency, safety, and convenience. Synthesized from 1,3,5-trihydroxy-benzen and boric acid, the B-CDs exhibited excellent dispersibility in carbonate-based electrolytes. The doped boron atoms, serving as electron-deficient centers, could engage fluorinated anion groups through Lewis acid-base interactions, thus inducing uniform lithium-ion deposition on the lithium anode. At an additive concentration of 0.3 mg/mL, a lithium symmetric cell demonstrated stable cycling for 2500 h under a current density of 0.5 mA/cm2 and a plating capacity of 0.5 mA·h/cm2, indicating that the carbon dot additive significantly enhanced the reversibility of lithium deposition/dissolution. When these carbon dots were incorporated into electrolytes of a LiFePO4 full cell, an initial capacity of 144.4 mA·h/g was achieved, with a capacity retention of 95.1% after 100 cycles.
碳点 / 硼掺杂 / 电化学储能 / 电解液添加剂 / 锂金属负极
Carbon dots / Boron doping / Electrochemical energy storage / Electrolyte additive / Lithium metal anode
O646
1 |
Zhao X. Y., Wang J. L., Yan X. D., Zhang L. Z., Chem. J. Chinese Universities, 2019, 40(6), 1258—1264
赵欣悦, 汪靖伦, 闫晓丹, 张灵志. 高等学校化学学报, 2019, 40(6), 1258—1264
|
2 |
Ai S. J., Zong C. X., Wu W., Feng J. J., Jin C., Fu F. Z., Liu J., Sun D. L., Zheng Q., Guo Y. P., Chem. J. Chinese Universities, 2018, 39(11), 2520—2528
艾淑娟, 宗成星, 吴为, 冯京京, 金灿, 付凤至, 刘靖, 孙冬兰, 郑琴, 郭也平. 高等学校化学学报, 2018, 39(11), 2520—2528
|
3 |
Wang F. C., Zhou W. L., Chem. J. Chinese Universities, 2018, 39(11), 2529—2533
王凤春, 周万里. 高等学校化学学报, 2018, 39(11), 2529—2533
|
4 |
Li S., Luo Z., Li L., Hu J., Zou G., Hou H., Ji X., Energy Storage Mater., 2020, 32, 306—319
|
5 |
Cha J., Han J. G., Hwang J., Cho J., Choi N. S., J. Power Sources, 2017, 357, 97—106
|
6 |
Li L., Wang D., Xu G., Zhou Q., Ma J., Zhang J., Du A., Cui Z., Zhou X., Cui G., J. Energy Chem., 2022, 65, 280—292
|
7 |
Wei J. S., Zhu Z. Y., Zhao X., Song T. B., Huang J. H., Zhang Y. X., Liu X., Chen L., Niu X. Q., Wang Y. G., Xiong H. M., Chem. Eng. J., 2021, 425, 130660
|
8 |
Song T. B., Ma Q. L., Zhang X. R., Ni J. W., He T. L., Xiong H. M., Chem. Eng. J., 2023, 471, 144735
|
9 |
Song T. B., Huang Z. H., Niu X. Q., Zhang X. R., Wei J. S., Xiong H. M., ChemSusChem, 2022, 15(6), e202102390
|
10 |
Huang Z. H., Wei J. S., Song T. B., Ni J. W., Wang F., Xiong H. M., SmartMat, 2022, 3(2), 323—336
|
11 |
Guo R. T., Li L., Wang B. W., Xiang Y. E., Zou G. Q., Zhu Y. R., Hou H. S., Ji X. B., Energy Storage Mater., 2021, 37, 8—39
|
12 |
Wang S. Y., Jing W., Chang J. W., Lu S. Y., Chem. J. Chinese Universities, 2023, 44(5), 20220733
王斯阳, 敬稳, 常江伟, 卢思宇. 高等学校化学学报, 2023, 44(5), 20220733
|
13 |
Wu Z. F., Sun Z. N., Xiong H. M., Chin. J. Chem., 2023, 41(16), 2035—2046
|
14 |
Hong D., Choi Y., Ryu J., Mun J., Choi W., Park M., Lee Y., Choi N. S., Lee G., Kim B. S., Park S., J. Mater. Chem. A, 2019, 7(35), 20325—20334
|
15 |
Wang W. C., Song Y. H., Yang G. D., Jiao R., Zhang J. Y., Wu X. L., Zhang J. P., Li Y. F., Tong C. Y., Sun H. Z., Small, 2023, e2206597
|
16 |
Hu Y., Chen W., Lei T. Y., Jiao Y., Wang H. B., Wang X. P., Rao G. F., Wang X. F., Chen B., Xiong J., Nano Energy, 2020, 68, 104373
|
17 |
Li S., Luo Z., Tu H. Y., Zhang H., Deng W. N., Zou G. Q., Hou H. S., Ji X. B., Energy Storage Mater., 2021, 42, 679—686
|
18 |
Song T. B., Huang Z. H., Zhang X. R., Ni J. W., Xiong H. M., Small, 2023, e2205558
|
19 |
Song T. B., Huang Z. H., Niu X. Q., Liu J., Wei J. S., Chen X. B., Xiong H. M., ChemNanoMat, 2020, 6(10), 1421—1436
|
20 |
Qu S. N., Zhou D., Li D., Ji W. Y., Jing P. T., Han D., Liu L., Zeng H. B., Shen D. Z., Adv. Mater., 2016, 28(18), 3516—3521
|
21 |
Dong X. Y., Niu X. Q., Wei J. S., Xiong H. M., Chem. J. Chinese Universities, 2019, 40(6), 1288—1292
董向阳, 牛晓青, 魏济时, 熊焕明. 高等学校化学学报, 2019, 40(6), 1288—1292
|
22 |
Tu H. Y., Li S., Luo Z., Xu L. Q., Zhang H., Xiang Y. E., Deng W. T., Zou G. Q., Hou H. S., Ji X. B., Chem. Commun.(Camb), 2022, 58(44), 6449—6452
|
23 |
Niu X. Q., Song T. B., Xiong H. M., Chin. Chem. Lett., 2021, 32(6), 1953—1956
|
24 |
Lei W., Portehault D., Dimova R., Antonietti M., J. Am. Chem. Soc., 2011, 133(18), 7121—7127
|
25 |
Li W., Zhou W., Zhou Z. S., Zhang H. R., Zhang X. J., Zhuang J. L., Liu Y. L., Lei B. F., Hu C. F., Angew Chem. Int. Ed., 2019, 58(22), 7278—7283
|
26 |
Kim K. H., Ahn H. J., Int. J.Energy Res., 2022, 46(6), 8367—8375
|
27 |
Chang Y. N., Li J. W., Ma J., Liu Y., Xing R., Wang Y. Q., Zhang G. X., Sci. China Mater., 2022, 65(5), 1276—1284
|
28 |
Cabo-Fernandez L., Neale A. R., Braga F., Sazanovich I. V., Kostecki R., Hardwick L. J., Phys. Chem. Chem. Phys., 2019, 21(43), 23833—23842
|
29 |
Chen Y. M., Hsu S. T., Tseng Y. H., Yeh T. F., Hou S. S., Jan J. S., Lee Y. L., Teng H., Small, 2018, 14(12), e1703571
|
30 |
Prakash Reddy V., Blanco M., Bugga R., J. Power Sources, 2014, 247, 813—820
|
31 |
Qin Y., Chen Z. H., Lee H. S., Yang X. Q., Amine K., J. Phys. Chem. C, 2010, 114(35), 15202—15206
|
32 |
Wu H. Y., Qin M. L., Li X. L., Cao Z. Q., Jia B. R., Zhang Z. L., Zhang D. Y., Qu X. H., Volinsky A. A., Electrochim. Acta, 2016, 206, 301—306
|
33 |
Takamatsu D., Koyama Y., Orikasa Y., Mori S., Nakatsutsumi T., Hirano T., Tanida H., Arai H., Uchimoto Y., Ogumi Z., J. Electrochem. Soc., 2014, 161(9), A1447
|
/
〈 |
|
〉 |