Application of directed micro-ecology in the fermentation of feed and silage

GUO Jianfeng, LI Yanjie, CUI Wenjing

PDF(1234 KB)
PDF(1234 KB)
Animals Breeding and Feed ›› 2024, Vol. 23 ›› Issue (11) : 1-10. DOI: 10.13300/j.cnki.cn42-1648/s.2024.11.001

Application of directed micro-ecology in the fermentation of feed and silage

Author information +
History +

Abstract

Objectives The effects of applying directed microecology (DME) technology in the fermentation of feed and silage were studied to solve the problems of the high cost and short shelf life faced by strains used in fermented feed. Methods Fermentation of commercially available lactic acid bacteria was expanded and verified on DME incubator. The cultured active bacterial solution was applied and evaluated in the fermentation of feed and silage. Results The key strains of lactic acid bacteria used in fermented feed were effectively expanded on the DME incubator with Lactobacillus plantarum at 30×108 CFU/mL, Lactobacillus delbrueckii at 40×108 CFU/mL, Lactobacillus reuteri at 20×108 CFU/mL, Lactobacillus casei at 20×108 CFU/mL, Pediococcus acidilactici at 50×108 CFU/mL, Lactobacillus paracasei at 30×108 CFU/mL, Lactobacillus acidophilus at 30×108 CFU/mL, Streptococcus bovis at 10×108 CFU/mL, and Enterococcus faecium at 50×108 CFU/mL. Adding active lactic acid bacteria solution during the fermentation process of fermented feed, corn silage, and Caragana korshinskii silage not only improved the sensory characteristics of fermented feed, but also effectively inhibited the growth of miscellaneous bacteria in the feed. The quality of corn silage was upgraded to the first-class standard, with a comprehensive score of more than 88 points. Conclusions Directed microecology (DME) technology provides an efficient and environmentally friendly solution for the fermentation of feed and silage, which helps promote the green and sustainable development of animal husbandry and the development of microecology in feed.

Key words

directed microecological (DME) system / feed fermentation / silage fermentation / lactic acid bacteria / effective expansion of culture / compound fermentation

CLC number

S816.53

Cite this article

Download Citations
GUO Jianfeng , LI Yanjie , CUI Wenjing. Application of directed micro-ecology in the fermentation of feed and silage. Animals Breeding and Feed. 2024, 23(11): 1-10 https://doi.org/10.13300/j.cnki.cn42-1648/s.2024.11.001

References

1
钟晨, 姜世光, 王修启, 等. 微生物发酵饲料在畜禽生产中的研究进展[J]. 动物营养学报, 2020, 32(8): 3516-3525.
2
宋雪莹. 发酵饲料及其在畜禽生产中应用的研究[J]. 湖南饲料, 2022(6): 47-48.
3
姚志芳, 冯宇哲, 王磊, 等. 酵母菌和乳酸菌在生物发酵饲料中的应用研究进展[J]. 饲料研究, 2020, 43(10): 154-158.
4
王里彦, 严慧, 李金辉, 等. 基于Meta分析的全株玉米青贮营养成分含量及其影响因素[J]. 动物营养学报, 2022, 34(2): 1352-1360.
5
李春喜, 叶润蓉, 杜岩功, 等. 高寒牧区青贮玉米生产性能初步研究[J]. 草地学报, 2013, 21(6): 1214-1217.
6
曹轶, 崔文靖, 马瑞强. 大豆根瘤菌定向微生态研究与应用[J]. 中国农业科技导报, 2024, 26(4): 215-224.
7
KRISTENSEN N B, SLOTH K H, HOJBERG O, et al. Effects of microbial inoculants on corn silage fermentation, microbial contents, aerobic stability, and milk production under field conditions[J]. Journal of dairy science, 2010, 93(8): 3764-3774.
8
郭晓宇, 丁德. 不同发酵温度对液体发酵饲料营养成分、挥发性脂肪酸和活菌数的影响[J]. 中国饲料, 2023(4): 96-99.
9
陈秀丽, 何受春, 李子铭, 等. 乳酸菌发酵饲料在畜禽养殖中的应用进展[J]. 饲料博览, 2021(10): 17-19.
10
刘辉, 季海峰, 王四新, 等. 复合乳酸菌发酵饲料对生长猪生长性能、粪便菌群、血清免疫和抗氧化指标的影响[J]. 动物营养学报, 2022, 34(2): 783-794.
11
王飒, 郭晓军, 李佳, 等. 功能菌株及其复合菌剂发酵配合饲料的研究[J]. 饲料工业, 2022, 43(8): 23-28.
12
王梅, 谢全喜, 侯楠楠, 等. 三种益生菌发酵剂固态发酵对豆粕营养品质的影响[J]. 中国酿造, 2020, 39(2): 115-119.
13
宋善丹, 陈光吉, 饶开晴, 等. 白酒糟固态发酵条件的筛选及营养价值评定[J]. 中国畜牧杂志, 2015, 51(15): 66-70.
14
姚凯勇. 黄酒糟发酵工艺优化及其奶牛饲用效果研究[D]. 杭州: 浙江大学, 2020.
15
KUMARI N, BANSAL S. Production and characterization of a novel, thermotolerant fungal phytase from agro-industrial byproducts for cattle feed[J]. Biotechnology letters, 2021, 43(4): 865-879.
16
邵勇军. 青贮饲料加工原理与技术[J]. 畜牧兽医科学(电子版), 2020(11): 179-180.
17
常玉萍. 洛阳市奶牛场青贮玉米饲料质量评价[D]. 郑州: 河南农业大学, 2010.
18
SHOCKEY W L, DEHORITY B A, Conrad H R. Effects of microbial inoculant on fermentation of alfalfa and corn1[J]. Journal of dairy science, elsevier, 1985, 68(11): 3076-3080.
19
陈跃鹏, 郑爱荣, 孙骁, 等. 不同方法处理的全株玉米青贮与玉米秸秆青贮对肉牛生长性能及经济效益的影响[J]. 动物营养学报, 2018, 30(7): 2571-2580.
20
王诚, 董桂红, 何荣彦, 等. 不同方式处理的全株玉米青贮饲料对肉牛生长性能及经济效益的影响[J]. 中国动物保健, 2023, 25(2): 103-104, 106.
21
何弦. 全株玉米青贮与玉米秸秆青贮对肉牛生长性能及经济效益的影响[J]. 饲料研究, 2020, 43(9): 98-101.
22
袁仕改. 不同添加剂对青贮玉米发酵品质及其有氧稳定性的影响[D]. 贵阳: 贵州大学, 2019.
23
侯建建, 白春生, 张庆, 等. 单一和复合乳酸菌添加水平对苜蓿青贮营养品质及蛋白组分的影响[J]. 草业科学, 2016, 33(10): 2119-2125.
24
王洋, 姚权, 孙娟娟, 等. 乳酸菌添加剂对苜蓿青贮品质和黄酮含量的影响[J]. 中国草地学报, 2018, 40(2): 48-53.
25
陈扬. 柠条锦鸡儿青贮技术及其在肉牛日粮中应用研究[D]. 呼和浩特: 内蒙古农业大学, 2024.
26
马淑梅, 宋谦, 余小亮, 等. 乳酸菌添加剂对不同品系小黑麦青贮饲料品质的影响[J]. 饲料研究, 2023, 46(2): 105-108.
27
柴继宽, 赵桂琴, 琚泽亮. 添加不同乳酸菌对燕麦低温青贮发酵的影响[J]. 草地学报, 2023, 31(3): 923-928.
28
YAN Y, LI X, GUAN H, et al. Microbial community and fermentation characteristic of Italian ryegrass silage prepared with corn stover and lactic acid bacteria[J]. Bioresource technology, 2019, 279: 166-173.

Comments

PDF(1234 KB)

Accesses

Citation

Detail

Sections
Recommended

/