
Antibacterial activity of derivative peptide based on cBD3 against multidrug resistant bacteria from canine skin
WU Fangrong, OUYANG Mingyu, ZHAO Yixuan, WANG Yuqing, HU Changmin
Antibacterial activity of derivative peptide based on cBD3 against multidrug resistant bacteria from canine skin
Objectives The multidrug resistant bacteria from canine skin were screened. The derivative peptide based on canine β-defensin-3 (cBD3) was designed and its antibacterial activity was studied. Methods The clinically isolated strains were screened with K-B drug-sensitive disk method. Subsequently, the amino acid sequence of β-defensin-3 (cBD3) was used as a template to design the sequence with amino acid substitution. The optimized peptide cBD3-ABU was selected for chemical synthesis. The antimicrobial activity of cBD3-ABU against multidrug resistant bacteria was detected with broth microdilution method. Results 8 strains of multidrug resistant bacteria from canine skin were obtained through screening. CBD3-ABU with a purity of 95.61% was obtained through solid-phase synthesis. The minimum inhibitory concentration (MIC) of cBD3 against Escherichia coli, S.epidermidis, S.pseudintermedius, and S.aureus was 32, 64, 64, 128 μg/mL, respectively. The antibacterial rate of high concentration cBD3-ABU against Escherichia coli, Staphylococcus epidermidis, Staphylococcus pseudointermedius and Staphylococcusaureus from canine skin was 96.02%, 81.85%, 87.25%, and 98.91%, respectively. Conclusions CBD3-ABU has good antibacterial activity in vitro and has the potential to be further developed into therapeutic drugs.
canine β-defensin-3 (cBD3) / multidrug resistant bacteria / minimum inhibitory concentrations (MIC) / antibacterial activity / drug resistance rate
S859.7
1 |
卢顺, 向敏, 高其双, 等. 哺乳动物防御素生物学研究进展[J]. 中国兽医杂志, 2014,50(2):61-64.
|
2 |
|
3 |
刘陶林, 张宜宸, 何季竺, 等. 狐β-防御素基因的组织分布及表达特性[J]. 中国兽医杂志, 2021,57(3):36-40.
|
4 |
|
5 |
|
6 |
徐海涛. 猪β-防御素-2的重组表达及体外抑菌和抗病毒试验研究[D]. 武汉: 华中农业大学, 2009.
|
7 |
|
8 |
|
9 |
|
10 |
|
11 |
|
12 |
朱永官, 欧阳纬莹, 吴楠, 等. 抗生素耐药性的来源与控制对策[J]. 中国科学院院刊, 2015,30(4):509-516.
|
13 |
薛占永, 刘伟, 张宁宁, 等. 犬细菌性皮肤病病原菌的分离鉴定与药敏试验[J]. 中国兽医杂志, 2008,44(12):57-58.
|
14 |
苏梦茹, 马培培, 李鑫鑫, 等. 9种抗菌药物对大肠埃希菌最小抑菌浓度的测定[J]. 动物医学进展, 2020,41(3):52-56.
|
15 |
赵国春, 扣泽华, 孔令聪, 等. β-防御素生理特性的研究进展[J]. 当代畜禽养殖业, 2020,10:17-20.
|
16 |
邱晓媛, 郭广振, 吴鹏鑫, 等. 防御素的生物学功能及其在畜牧业的应用研究进展[J]. 动物营养学报, 2022,7:1-6.
|
17 |
任艳蓉, 李传峰, 孟春春, 等. 犬β防御CBD122原核表达及其抗病毒活性研究[J]. 中国动物传染病学, 2022,7:1-11.
|
18 |
|
19 |
|
20 |
王宇光, 叶秋娟, 吴冬梅, 等. 生物催化法水解制备N-BOC-L-α-氨基丁酸[J]. 发酵科技通讯, 2016,45(3):129-132.
|
/
〈 |
|
〉 |