Characterizing the inclusion complex of ketoconazole-methyl-β-cyclodextrin and its antibacterial activity

XU Shufeng, ZHANG Zhiyuan, MA Yanzhi, NIE Jiehua, LIAO Jiedan

PDF(675 KB)
PDF(675 KB)
Animals Breeding and Feed ›› 2024, Vol. 23 ›› Issue (05) : 17-22. DOI: 10.13300/j.cnki.cn42-1648/s.2024.05.017

Characterizing the inclusion complex of ketoconazole-methyl-β-cyclodextrin and its antibacterial activity

Author information +
History +

Abstract

Objectives In order to improve the water solubility and antibacterial activity of the low water-soluble antifungal drug ketoconazole (KCZ) and reduce the limits of clinical application. Methods The inclusion complex of ketoconazole-methyl-β-cyclodextrin was prepared with the saturated solution method. The water solubility of the inclusion complex was measured with high-performance liquid chromatography (HPLC). Fourier transform infrared spectroscopy (IR) was used to characterize the structure of the inclusion complex. The in vitro antibacterial activity of the single ketoconazole and the inclusion complex of ketoconazole-methyl-β-cyclodextrin against Candida albicin was comparatively tested with method of sheet diffusion (K-B) and minimum inhibitory concentration (MIC). Results The water solubility of ketoconazole in the inclusion complex was about 2 941 times higher than that of single ketoconazole through the inclusion of methyl-β-cyclodextrin. The formation of new phases was confirmed by Fourier transform infrared spectroscopy (IR). The antibacterial zone of single ketoconazole and the inclusion complex was (22.00±1.63) mm and (28.00±1.63) mm. The minimum inhibitory concentration (MIC) of single ketoconazole and the inclusion complex was (0.125±0.029) μg/mL and (0.062 5±0.015 0) μg/mL. Conclusions The inclusion complex of ketoconazole methyl-β-cyclodextrin did not destroy the original antibacterial ability of ketoconazole against Candida albicans, but improved its antibacterial effect.

Key words

ketoconazole / inclusion complex / Fourier transform infrared spectroscopy (IR) / test of drug sensitivity / Minimum inhibitory concentration (MIC)

CLC number

S859.79

Cite this article

Download Citations
XU Shufeng , ZHANG Zhiyuan , MA Yanzhi , et al . Characterizing the inclusion complex of ketoconazole-methyl-β-cyclodextrin and its antibacterial activity. Animals Breeding and Feed. 2024, 23(05): 17-22 https://doi.org/10.13300/j.cnki.cn42-1648/s.2024.05.017

References

1
于翔. 家畜真菌皮肤病的诊断和防控[J]. 畜牧兽医科技信息2020(1):63.
2
方婷婷, 何伊能, 王慧, 等. 浅部真菌病治疗中存在的问题及中医治疗对策[J]. 中国真菌学杂志202318(1):38-41.
3
霍红霞. 口服氟康唑与酮康唑治疗阴道念珠菌病疗效及安全性对比[J]. 临床医学研究与实践20172(22):57-58.
4
王曦悦, 刘润松, 仲华, 等. 新型抗真菌药物研发的现状及未来[J]. 中南药学202321(6):1403-1411.
5
赵运英, 曹正锋, 曹春蕾. 酿酒酵母中对抗真菌药物酮康唑敏感的突变菌株的筛选[J]. 基因组学与应用生物学2020(7):3093-3102.
6
SORINA D, ADIANA G F, REMUS M, et al. Ketoconazole-p aminobenzoic cocrystal, an improved antimycotic drug formulation, does not induce skin sensitization on the skin of BALBc mice.[J]. Inflammopharmacology, 2021, 29(3):1-13.
7
马井彪. 酮康唑对犬真菌性皮肤病的疗效观察[J]. 畜禽业201930(9):110.
8
YUTA A, YASUNORI I, YOSHIO M, et al. Efficient drug loading method for poorly water-soluble drug into bicelles through passive diffusion. [J]. Molecular pharmaceutics, 2023, 20(11):5701-5713.
9
卓敏, 严忠海, 张加慧. 环糊精及其衍生物在药学应用中的安全性综述[J]. 转化医学电子杂志20174(6):77-83.
10
朱士龙, 李勇, 林红卫, 等. 青藤碱-环糊精包合工艺的优化及包合常数测定[J]. 食品科学201233(8):54-59.
11
徐徉. 2%酮康唑乳膏、2%硝酸舍他康唑乳膏、1%联苯苄唑乳膏的体外抗真菌活性研究[D]. 长春: 吉林大学, 2012.
12
李海波. 抗真菌药酮康唑中间体的合成工艺的研究[D]. 成都: 四川大学, 2006.
13
白婷, 杨蕊, 朱琳, 等. 三唑类抗真菌药物致急性胰腺炎不良反应文献分析[J]. 现代药物与临床2022(6):1389-1393.
14
洪阳, 叶琳, 周晓倩, 等. 咪唑类抗真菌药物所致药物性肝病11例临床分析[J]. 肝脏2008(4):354.DOI:10.14000/j.cnki.issn.1008-1704.2008.04.038 .
15
蒋川. 硝苯地平固体分散体的红外光谱/化学计量学表征研究[D]. 南京: 南京师范大学, 2015.
16
范林宏, 范文翔, 韦志强, 等. 近红外光谱技术结合化学计量学在中药分析中的应用现状[J]. 中国实验方剂学杂志201925(24):205-210.

Comments

PDF(675 KB)

Accesses

Citation

Detail

Sections
Recommended

/