Research Progress of Fe3O4 Mgnetic Nanomaterials in the Medical Field

Xiao YAN, Yao XU, Jing ZHANG, Xi YUAN, Famin KE

PDF(912 KB)
PDF(912 KB)
Journal of Southwest Medical University ›› 2025, Vol. 48 ›› Issue (1) : 105-110. DOI: 10.3969/j.issn.2096-3351.2025.01.020
Review

Research Progress of Fe3O4 Mgnetic Nanomaterials in the Medical Field

Author information +
History +

Abstract

With the progression of nanotechnology, magnetic nanomaterials, especially magnetite (Fe3O4) nanoparticles, have increasingly showcased their pivotal role in the field of medicine. The Fe3O4 magnetic nanomaterials garner considerable interest from researchers due to their unique magnetic properties, superior biocompatibility, and facile surface functionalization capabilities. Under the influence of external magnetic fields, these materials demonstrate rapid and directed mobility. Furthermore, their nanoscale dimensions give rise to high specific surface areas and enhanced surface energies, which facilitate the efficient adsorption and conjugation of drug molecules and biomolecules. Moreover, the stable chemical properties and low biotoxicity of Fe3O4 magnetic nanomaterials render them highly promising for various medical applications. In biomedical research, Fe3O4 magnetic nanomaterials have been widely adopted across multiple domains and achieved notable advancements. This article presented a comprehensive overview of the research advances of Fe3O4 magnetic nanomaterials in diverse areas such as drug delivery systems, tumor hyperthermia therapy, blood purification, enzyme-catalyzed therapy, magnetic resonance imaging (MRI), protein and nucleic acid separation and purification, and cell separation and immune analysis. It also looked forward to potential development paths and innovation points in the technology..

Key words

Fe3O4 magnetic nanomaterials / Drug delivery systems / Tumor hyperthermia therapy / Blood purification / Enzyme-catalyzed therapy / Magnetic resonance imaging (MRI) / Protein and nucleic acid separation and purification / Cell separation / Immune analysis

Cite this article

Download Citations
Xiao YAN , Yao XU , Jing ZHANG , et al . Research Progress of Fe3O4 Mgnetic Nanomaterials in the Medical Field. Journal of Southwest Medical University. 2025, 48(1): 105-110 https://doi.org/10.3969/j.issn.2096-3351.2025.01.020

References

1
HAO M, XIA H, DUAN JZ, et al. A living material constructed from stem cells for tumor-tropic oncotherapy with real-time imaging[J]. Adv Funct Materials, 2022, 32(24): 2201013.
2
贾园, 马欢, 杨菊香, 等. 磁性四氧化三铁纳米粒子的制备及其应用研究进展[J]. 化学工业与工程, 2023, 40(5): 8-18.
3
CHEN MJ, LI J, SHU GF, et al. Homogenous multifunctional microspheres induce ferroptosis to promote the anti-hepatocarcinoma effect of chemoembolization[J]. J Nanobiotechnol, 2022, 20(1): 179.
4
MAHMOUDI M, SIMCHI A, MILANI AS, et al. Cell toxicity of superparamagnetic iron oxide nanoparticles[J]. J Colloid Interface Sci, 2009, 336(2): 510-518.
5
WU W, YU X, SUN J, et al. Zeolitic imidazolate framework (ZIF-8) decorated iron oxide nanoparticles loaded doxorubicin hydrochloride for osteosarcoma treatment - in vitro and in vivo preclinical studies[J]. Int J Nanomedicine, 2023, 18: 7985-7999.
6
LIU JF, JANG B, ISSADORE D, et al. Use of magnetic fields and nanoparticles to trigger drug release and improve tumor targeting[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2019, 11(6): e1571.
7
YAGUBLU V, KARIMOVA A, HAJIBABAZADEH J, et al. Overview of physicochemical properties of nanoparticles as drug carriers for targeted cancer therapy[J]. J Funct Biomater, 2022, 13(4): 196.
8
LIU J, CABRAL H, MI P. Nanocarriers address intracellular barriers for efficient drug delivery, overcoming drug resistance, subcellular targeting and controlled release[J]. Adv Drug Deliv Rev, 2024, 207: 115239.
9
PURUSHOTHAM S, RAMANUJAN RV. Thermoresponsive magnetic composite nanomaterials for multimodal cancer therapy[J]. Acta Biomater, 2010, 6(2): 502-510.
10
ABOUSALMAN Z, REFAAT A, DEHGHANKELISHADI P, et al. Insights into targeted and stimulus-responsive nanocarriers for brain cancer treatment[J]. Adv Healthc Mater, 2024, 13(12): e2302902.
11
BAO J, GUO S, ZU X, et al. Polypyrrole-coated magnetite Vortex nanoring for hyperthermia-boosted photothermal/magnetothermal tumor ablation under photoacoustic/magnetic resonance guidance[J]. Front Bioeng Biotechnol, 2021, 9: 721617.
12
LI Z, GUO T, ZHAO S, et al. The therapeutic effects of MUC1-C shRNA@Fe3O4 magnetic nanoparticles in alternating magnetic fields on triple-negative breast cancer[J]. Int J Nanomedicine, 2023, 18: 5651-5670.
13
NGUYEN LH, NAM NH, TAM LT, et al. Effect of Gd substitution on structure, optical and magnetic properties, and heating efficiency of Fe3O4 nanoparticles for magnetic hyperthermia applications[J]. J Alloys Compd, 2023, 968: 172205.
14
YUSEFI M, SHAMELI K, JAHANGIRIAN H, et al. How magnetic composites are effective anticancer therapeutics? A comprehensive review of the literature[J]. Int J Nanomedicine, 2023, 18: 3535-3575.
15
PUCCI C, DEGL’INNOCENTI A, BELENLI GÜMÜŞ M, et al. Superparamagnetic iron oxide nanoparticles for magnetic hyperthermia: recent advancements, molecular effects, and future directions in the omics era[J]. Biomater Sci, 2022, 10(9): 2103-2121.
16
NICA V, MARINO A, PUCCI C, et al. Cell-membrane-coated and cell-penetrating peptide-conjugated trimagnetic nanoparticles for targeted magnetic hyperthermia of prostate cancer cells[J]. ACS Appl Mater Interfaces, 2023, 15(25): 30008-30028.
17
MA Y, CHEN T, IQBAL MZ, et al. Applications of magnetic materials separation in biological nanomedicine[J]. Electrophoresis, 2019, 40(16-17): 2011-2028.
18
SHI Z, JIN L, HE C, et al. Hemocompatible magnetic particles with broad-spectrum bacteria capture capability for blood purification[J]. J Colloid Interface Sci, 2020, 576: 1-9.
19
王蒙. 血液净化类纳米材料的制备及其应用研究[D]. 南京: 南京师范大学, 2021.
20
WANG M, YAN WQ, CHU ML, et al. Erythrocyte membrane-wrapped magnetic nanotherapeutic agents for reduction and removal of blood Cr(Ⅵ)[J]. ACS Appl Mater Interfaces, 2020, 12(25): 28014-28023.
21
WANG M, BAO T, YAN W, et al. Nanomotor-based adsorbent for blood Lead(Ⅱ) removal in vitro and in pig models[J]. Bioact Mater, 2021, 6(4): 1140-1149.
22
CHEN TT, WANG M, TAN KY, et al. Ibuprofen loaded into metal-organic framework shells coated on Fe3O4 nanoparticles for the removal of protein-bound uremic toxins in blood[J]. ACS Appl Nano Mater, 2022, 5(4): 5838-5846.
23
MANSUR AAP, MANSUR HS, CARVALHO SM. Engineered hybrid nanozyme catalyst cascade based on polysaccharide-enzyme-magnetic iron oxide nanostructures for potential application in cancer therapy[J]. Catal Today, 2022, 388: 187-198.
24
李香 著. 钴掺杂四氧化三铁纳米酶对氧化应激和缺血性脑卒中的作用研究[D]. 衡阳: 南华大学, 2021.
25
CAI XY, XU TT, DING R, et al. Oxygen self-supplying small size magnetic nanoenzymes for synergistic photodynamic and catalytic therapy of breast cancer[J]. Nanoscale, 2024, 16(8): 4095-4104.
26
程璐. 四氧化三铁纳米酶增强益生菌抗菌并协同创面微环境调节策略用于加速伤口愈合的研究[D]. 扬州: 扬州大学, 2021.
27
ZHANG W, ZHANG Z, LOU S, et al. Hyaluronic acid-stabilized Fe3O4 nanoparticles for promoting in vivo magnetic resonance imaging of tumors[J]. Front Pharmacol, 2022, 13: 918819.
28
黄丹, 刘勇. 功能磁共振成像在抑郁症的应用现状及进展研究[J]. 西南医科大学学报, 2021, 44(6): 676-680.
29
XIE X, ZHAI J, ZHOU X, et al. Magnetic particle imaging: from tracer design to biomedical applications in vasculature abnormality[J]. Adv Mater, 2024, 36(17): e2306450.
30
WEI M, WANG L, WANG Y, et al. Intracellular construction of cathepsin B-guided gadolinium nanoparticles for enhanced T2-weighted MR tumor imaging[J]. Small, 2023, 19(29): e2300015.
31
MA Z, ZHANG Y, ZHU Y, et al. Construction of a tumor-targeting nanobubble with multiple scattering interfaces and its enhancement of ultrasound imaging[J]. Int J Nanomedicine, 2024, 19: 4651-4665.
32
YANG J, FENG J, YANG S, et al. Exceedingly small magnetic iron oxide nanoparticles for T 1-weighted magnetic resonance imaging and imaging-guided therapy of tumors[J]. Small, 2023, 19(49): 2302856.
33
LI B, GONG TT, XU NN, et al. Improved stability and photothermal performance of polydopamine-modified Fe3O4 nanocomposites for highly efficient magnetic resonance imaging-guided photothermal therapy[J]. Small, 2020, 16(45): 2003969.
34
LIANG XL, CHEN M, BHATTARAI P, et al. Complementing cancer photodynamic therapy with ferroptosis through iron oxide loaded porphyrin-grafted lipid nanoparticles[J]. ACS Nano, 2021, 15(12): 20164-20180.
35
JEON M, HALBERT MV, STEPHEN ZR, et al. Iron oxide nanoparticles as T1 contrast agents for magnetic resonance imaging: fundamentals, challenges, applications, and prospectives[J]. Adv Mater, 2021, 33(23): e1906539.
36
李雅辉, 罗怡杰, 吴籽萱, 等. T1-T2双模纳米磁共振造影剂的研究进展[J]. 中国医药生物技术, 2023, 18(6): 516-522.
37
YANG WT, DENG CJ, SHI XD, et al. Structural and molecular fusion MRI nanoprobe for differential diagnosis of malignant tumors and follow-up chemodynamic therapy[J]. ACS Nano, 2023, 17(4): 4009-4022.
38
ZHANG P, QIAO Y, ZHU L, et al. Nanoprobe based on biominerals in protein Corona for dual-modality MR imaging and therapy of tumors[J]. ACS Nano, 2023, 17(1): 184-196.
39
WANG SM, WANG S, YU X, et al. Magnetic nanoparticles functionalized with immobilized apolipoprotein antibodies for direct detection of non-high density lipoprotein cholesterol in human serum[J]. Chem Eng J, 2020, 385: 123465.
40
MLADENOVIĆ D, KHAMARI D, KITTEL Á, et al. Acidification of blood plasma facilitates the separation and analysis of extracellular vesicles[J]. J Thromb Haemost, 2023, 21(4): 1032-1042.
41
ZHENG J, ZHANG M, MIAO T, et al. Anchoring nickel nanoparticles on three-dimensionally macro-/ mesoporous titanium dioxide with a carbon layer from polydopamine using polymethylmethacrylate microspheres as sacrificial templates[J]. Mater Chem Front, 2019, 3(2): 224-232.
42
LIU S, LI Z, YU B, et al. Recent advances on protein separation and purification methods[J]. Adv Colloid Interface Sci, 2020, 284: 102254.
43
REZA KE, HOSSEIN B, ZEINAB A, et al. Functionalized magnetic nanoparticles for the separation and purification of proteins and peptides[J]. TrAC Trends in Analytical Chemistry, 2021, 141: 116291.
44
LE TD, SUTTIKHANA I, ASHAOLU TJ. State of the art on the separation and purification of proteins by magnetic nanoparticles[J]. J Nanobiotechnology, 2023, 21(1): 363.
45
WANG XY, ZHU HS, CAO BY, et al. Hollow Fe3O4/Fe@C nanocubes for broadband microwave absorption spanning low- and high-frequency bands[J]. Chem Eng J, 2024, 490: 151552.
46
GE MY, ZHANG JL, GAI ZQ, et al. Synthesis of magnetic Fe3O4@PS-ANTA-M2+ (M=Ni, Co, Cu and Zn) nanospheres for specific isolation of histidine-tagged proteins[J]. Chem Eng J, 2021, 404: 126427.
47
FEI ZJ, CHENG C, WEI RB, et al. Reversible superhydrophobicity unyielding magnetic beads of flipping-triggered (SYMBOL) regulate the binding and unbinding of nucleic acids for ultra-sensitive detection[J]. Chem Eng J, 2022, 431: 133953.
48
彭诗珍, 黄启同, 甘滔, 等. 四氧化三铁基复合材料在生物磁分离中的应用[J]. 赣南医学院学报, 2022, 42(4): 389-395.
49
MORADI N, MUHAMMADNEJAD S, DELAVARI H, et al. Bio-conjugation of anti-human CD3 monoclonal antibodies to magnetic nanoparticles by using cyanogen bromide: a potential for cell sorting and noninvasive diagnosis[J]. Int J Biol Macromol, 2021, 192: 72-81.
50
LI C, LI Z, GAN Y, et al. Selective capture, separation, and photothermal inactivation of methicillin-resistant Staphylococcus aureus (MRSA) using functional magnetic nanoparticles[J]. ACS Appl Mater Interfaces, 2022, 14(18): 20566-20575.
51
YANG H, REN J, ZHAO M, et al. Novel electrochemical immunosensor for O6-methylguanine-DNA methyltransferase gene methylation based on graphene oxide-magnetic nanoparticles-β-cyclodextrin nanocomposite[J]. Bioelectrochemistry, 2022, 146: 108111.
52
殷炜. 环境矿物纳米材料制备及其对水中典型污染物去除性能与机制的研究[D]. 合肥: 中国科学技术大学, 2023.
53
苏欣悦, 丁欣欣, 闫良国. Fe3O4磁性纳米材料的制备及水处理应用进展[J]. 中国粉体技术, 2020, 26(6): 1-10.

Comments

PDF(912 KB)

Accesses

Citation

Detail

Sections
Recommended

/