Research Progress on Preparation of Poly(glycolic acid) and Its Applications in Oilfield

WANG Yukang, ZHAO Fangyuan, YI Zhuo, LI Jing, YANG Jie

PDF(1048 KB)
PDF(1048 KB)
Plastics Science and Technology ›› 2025, Vol. 53 ›› Issue (03) : 187-192. DOI: 10.15925/j.cnki.issn1005-3360.2025.03.033
Review

Research Progress on Preparation of Poly(glycolic acid) and Its Applications in Oilfield

Author information +
History +

Abstract

As a biodegradable material, poly(glycolic acid) (PGA) has emerged as a green alternative to conventional oilfield materials, addressing pollution and formation blockage challenges through its high strength, high-temperature resistance, and controllable degradability. However, PGA still faces limitations such as insufficient stability in high-temperature/high-salinity environments, imprecise regulation of degradation rates, and elevated production costs. The article systematically reviews PGA synthesis methods, including direct polycondensation, ring-opening polymerization, and coal chemical synthesis routes. It comprehensively analyzes PGA's physical properties, mechanical performance, thermal stability, and degradation behavior, with particular emphasis on its high strength, pressure resistance, and controllable degradation advantages under oilfield high-temperature/high-pressure conditions. The review highlights recent advances in PGA modification strategies, covering molecular structure optimization in copolymerization and interface compatibility enhancement in blending modification. Finally, it discusses critical technical challenges in thermal stability control and precise degradation rate regulation, while envisioning PGA's application potential in intelligent temporary plugging and reservoir protection for sustainable oilfield engineering.

Key words

poly(glycolic acid) / property / modification / temporary plugging agent

Cite this article

Download Citations
WANG Yukang , ZHAO Fangyuan , YI Zhuo , et al . Research Progress on Preparation of Poly(glycolic acid) and Its Applications in Oilfield. Plastics Science and Technology. 2025, 53(03): 187-192 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.03.033

References

1
SAMANTARAY P K, LITTLE A, HADDLETON D M, et al. Poly(glycolic acid)(PGA): A versatile building block expanding high performance and sustainable bioplastic applications[J]. Green Chemistry, 2020, 22(13): 4055-4081.
2
陈兰兰,孙小杰,王荣,等.助剂复配对聚乙醇酸性能的影响[J].塑料工业,2021,49(2):145-149.
3
AYYOOB M, LEE D H, KIM J H, et al. Synthesis of poly(glycolic acids) via solution polycondensation and investigation of their thermal degradation behaviors[J]. Fibers and Polymers, 2017, 18(3): 407-415.
4
NING Y, WANG W Y, ZHOU Y G, et al. Acceleration effects of residual monomers on the degradation of poly(glycolic acids)[J]. Journal of Polymers and the Environment, 2021, 29: 3054-3067.
5
崔爱军,陆卫良,王泽云,等.熔融/固相缩聚法合成聚乙醇酸及其性能表征[J].高分子通报,2013(2):73-78.
6
GAUTIER E, FUERTES P, CASSAGNAU P, et al. Synthesis and rheology of biodegradable poly(glycolic acid) prepared by melt ring-opening polymerization of glycolide[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2009, 47(5): 1440-1449.
7
TAKAHASHI K, TANIGUCHI I, MIYAMOTO M, et al. Melt/solid polycondensation of glycolic acid to obtain high-molecular-weight poly(glycolic acid)[J]. Polymer, 2000, 41(24): 8725-8728.
8
LU Y, SCHMIDT C, BEUERMANN S. Fast synthesis of high-molecular-weight polyglycolide using diphenyl bismuth bromide as catalyst[J]. Macromolecular Chemistry and Physics, 2015, 216(4): 395-399.
9
谭博雯,孙朝阳,计扬.聚乙醇酸的合成、改性与性能研究综述[J].中国塑料,2021,35(10):137-146.
10
叶林敏,黄乐乐,段新平,等.煤经合成气制可降解聚乙醇酸的技术进展[J].洁净煤技术,2022,28(1):110-121.
11
CHEN L L, SUN X J, REN Y Q, et al. Enhancing melt strength of polyglycolic acid by reactive extrusion with chain extenders[J]. Journal of Applied Polymer Science, 2022, 139(11): 51796.
12
LI J, STAYSHICH R M, MEYER T Y. Exploiting sequence to control the hydrolysis behavior of biodegradable PLGA copolymers[J]. Journal of the American Chemical Society, 2011, 133(18): 6910-6913.
13
顾伟楠,田阳,赵子明,等.聚丙交酯-乙交酯的合成及表征的研究进展[J].中国医药工业杂志,2022,53(6):819-832.
14
QIN P K, WU L B, JIE S Y. Poly(glycolic acid) materials with melt reaction/processing temperature window and superior performance synthesized via melt polycondensation[J]. Polymer Degradation and Stability, 2024, 220: 110641.
15
MAGAZZINI L, GRILLI S, FENNI S E, et al. The blending of poly(glycolic acid) with polycaprolactone and poly(L-lactide): Promising combinations[J]. Polymers, 2021, 13(16): 2780.
16
XU P W, TAN S, NIU D Y, et al. Effect of temperatures on stress-induced structural evolution and mechanical behaviors of polyglycolic acid/polycaprolactone blends[J]. Polymer, 2023, 283: 126239.
17
LIU B, MA C, ZHU M T, et al. Tough and aqua-degradable poly(glycolic acid)/poly(ε-caprolactone) blends obtained through interfacial regulation[J]. Journal of Applied Polymer Science, 2024: e56487.
18
LIU X, HONG M, FALIVENE L, et al. Closed-loop polymer upcycling by installing property-enhancing comonomer sequences and recyclability[J]. Macromolecules, 2019, 52(12): 4570-4578.
19
DING Y, WANG J X, LUO C C, et al. Modification of poly(butylene succinate) with biodegradable glycolic acid: Significantly improved hydrolysis rate retaining high toughness property[J]. Journal of Applied Polymer Science, 2022, 139(19): 52106.
20
赵伟君,董军,石道,等.利用纳米晶纤维素改性聚乙醇酸的研究[J].嘉兴学院学报,2017,29(6):52-55.
21
HU H, ZHANG R Y, WANG J G, et al. A mild method to prepare high molecular weight poly(butylene furandicarboxylate-co-glycolate) copolyesters: effects of the glycolate content on thermal, mechanical, and barrier properties and biodegradability[J]. Green Chemistry, 2019, 21(11): 3013-3022.
22
DING Y, HUANG D, AI T H, et al. Bio-based poly(butylene furandicarboxylate-co-glycolate) copolyesters: Synthesis, properties, and hydrolysis in different aquatic environments for water degradation application[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(3): 1254-1263.
23
SPEARMAN S S, IRIN F, RAMESH S, et al. Effect of pseudomonas lipase enzyme on the degradation of polycaprolactone/polycaprolactone-polyglycolide fiber blended nanocomposites[J]. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68(7): 360-367.
24
CHANG L F, ZHOU Y G, NING Y, et al. Toughening effect of physically blended polyethylene oxide on polyglycolic acid[J]. Journal of Polymers and the Environment, 2020, 28: 2125-2136.
25
王梓冲,吴亮,朱丽莎,等.高韧性PGA/TPEE共混物的制备及性能[J].工程塑料应用,2024,52(5):35-42.
26
吴羽.聚乙醇酸树脂组合物及其成型物:CN1768114[P].2007-09-12.
27
JIANG B X, WANG Y S, PENG Z G, et al. Synthesis of poly(butylene adipate terephthalate)-co-poly(glycolic acid) with enhanced degradability in water[J]. Macromolecules, 2023, 56(22): 9207-9217.
28
MA C, ZHU M T, GONG M, et al. Strong, tough and aqua-degradable poly(glycolic acid)/poly(butyleneadipate-co-terephthalate) composites achieved by interfacial regulation[J]. Journal of Materials Research and Technology, 2025.
29
FU Y, ZHU L, LIU B, et al. Biodegradation behavior of poly(glycolic acid)(PGA) and poly(butylene adipate-co-terephthalate)(PBAT) blend films in simulation marine environment[J]. Polymer, 2024, 307: 127295.
30
江猛,刘胜峰,孙小杰,等.PGA/PBAT复合材料抗水解性能研究[J].塑料科技,2022,50(7):32-37.
31
MA Z R, YIN T, JIANG Z K, et al. Bio-based epoxidized soybean oil branched cardanol ethers as compatibilizers of polybutylene succinate (PBS)/polyglycolic acid (PGA) blends[J]. International Journal of Biological Macromolecules, 2024, 259: 129319.
32
赵云翔,王世波,黄晶,等.生物降解聚己二酸丁二醇酯的制备及改性聚乙醇酸研究[J].塑料工业,2024,52(7):70-76.
33
中海石油(中国)有限公司.压裂用复合暂堵剂及其制备方法:CN110305652[P].2019-10-08.
34
郑健,罗鑫,岳文翰,等.新型可溶暂堵绳结性能及应用研究[J].现代化工,2024,44():274-279.
增刊2
35
ZHANG Z Y, PENG Q, SHI X F, et al. A theoretical and experimental study on the degradation mechanism of polyglycolic acid under acidic, neutral, and basic conditions[J]. Journal of Applied Polymer Science, 2024, 141(37): e55947.
36
LOW Y J, ANDRIYANA A, ANG B C, et al. Bioresorbable and degradable behaviors of PGA: Current state and future prospects[J]. Polymer Engineering & Science, 2020, 60(11): 2657-2675.
37
王兴国,吕明福,黄逸伦,等.聚乙醇酸高温降解性能研究及其调控方法[J].中国塑料,2024,38(8):13-19.
38
SUN X J, CHEN L L, WANG R, et al. Control of hydrolytic degradation of polyglycolic acid using chain extender and anti-hydrolysis agent[J]. Journal of Applied Polymer Science, 2022, 139(25): e52398.
39
MOHAMMADIKHAH R, MOHAMMADI R J. Thermal degradation and kinetic analysis of pure polyglycolic acid in presence of humid air[J]. Iranian Polymer Journal, 2008, 17(9): 691-701.
40
CUI A J, XUE S H, HE M Y, et al. The effects on thermal stability of polyglycolic acid by adding dihydrazide metal chelators[J]. Polymer Degradation and Stability, 2017, 137: 238-243.
41
陈启群.助剂对生物降解高分子材料聚羟基乙酸的热稳定性的影响[D].杭州:浙江大学,2016.
42
WEI C, GUO P, LYU M F, et al. High barrier poly(glycolic acid) modified poly(butylene adipat-co-terephthalate) blown films and accelerated ultraviolet degradability evaluation[J]. ACS Appl Polym Mater, 2023, 5: 3457-3467.
43
XIONG C M, SHI Y, ZHOU F J, et al. High efficiency reservoir stimulation based on temporary plugging and diverting for deep reservoirs[J]. Petroleum Exploration and Development, 2018, 45(5): 948-954.
44
冯兴武,刘正奎,郑桐,等.改性聚乙醇酸暂堵剂研发及其在河南油田的应用[J].石油地质与工程,2024,38(3):23-28.
45
蒋其辉,方太安,杨向同,等.一种超高温自降解的豆荚式炮眼暂堵剂及其制备与应用:CN202210980708.2[P].2022-08-16.
46
李美娟.基于聚乳酸环境友好型聚合物的制备与性能研究[D].南京:东南大学,2021.
47
吴鹏飞,崔华帅,朱金唐,等.暂堵剂用聚乳酸/聚乙醇酸复合纤维的制备及降解性能研究[J].材料导报,2024,38(13):270-275.
48
胡安邦,于小荣,彭凯南,等.聚酯类颗粒暂堵剂的降解规律及水解机理[J].精细化工,2024,41(9):2038-2044, 2081.
49
刘多容,林永茂,兰林,等.一种射孔炮眼暂堵用可溶降解暂堵球及其制备方法:CN201710881398.8[P].2017-09-26.
50
WEI L, MA S Y, HAO M Y, et al. Modifying anti-compression property and water-soluble ability of polyglycolic acid via melt blending with polyvinyl alcohol[J]. Polymers, 2022, 14(16): 3375.
51
张毅,杨继现,张伟,等.可降解压裂封隔器材料优选及设计[J].西部探矿工程,2020,32(4):75-78.

Comments

PDF(1048 KB)

Accesses

Citation

Detail

Sections
Recommended

/