
Study on Ignition Sensitivity and Pyrolysis Kinetics of Antioxidant 264
ZHENG Qiuyu, WANG Qi, DONG Lihui, LIU Tianqi, BAO Lixia, ZHANG Yan
Study on Ignition Sensitivity and Pyrolysis Kinetics of Antioxidant 264
Antioxidant 264, which is used in various plastics and rubbers, poses a risk of dust explosion during production and processing. In order to reduce the occurrence of antioxidant 264 dust explosion accident, the minimum ignition temperature experiment device and synchronous thermal analyzer were used to study the distribution characteristics of the minimum ignition temperature (MITC) and dynamic analysis respectively. The results show that as the dust dispersion pressure increases, the MITC first decreases and then slowly rises, with the minimum MITC occurring at a dispersion pressure of 50 kPa. As the mass concentration of the dust cloud increases, the MITC first rapidly decreases and then slowly increases, with a sensitive concentration existing. For antioxidant 264 particles with a size of 54~75 μm, the sensitive concentration of MITC is 889 g/m3. The larger the dust particle size, the higher the MITC, and the sensitive concentration shifts to the left and decreases. The orthogonal experiment analysis shows that dust particle size has the greatest impact on MITC. The Coats-Redfern method was used to calculate the activation energy of dust particles with sizes of 54~75, 75~111, 111~150 μm, which were found to be 271.085, 333.098, 385.343 kJ/mol, respectively. The dust with a particle size of 54~75 μm has the lowest activation energy and is the most flammable. The research findings provide data support for the industrial prevention of antioxidant 264 dust explosion accidents.
Antioxidant 264 / Minimum ignition temperature of dust cloud / Orthogonal test / Pyrolysis / Kinetic analysis
1 |
蒋博文,许开立,刘博,等.DDGS粉尘燃爆特性试验研究及热反应分析[J].中国安全生产科学技术,2023,19(9):136-142.
|
2 |
罗振敏,张春艳,杨勇.氨纶防黄剂粉尘的着火特性分析[J/OL].材料导报,1-13[2024-05-16].
|
3 |
|
4 |
吕相宇,代华明,邱东阳,等.硬脂酸粉着火敏感性影响因素及惰化研究[J].中国安全生产科学技术,2022,18(8):178-182.
|
5 |
郭昊,胡双启,王文琪,等.精对苯二甲酸(PTA)粉尘云最低着火温度实验研究[J].消防科学与技术,2018,37(10):1333-1335.
|
6 |
冯长根,姚本林,刘振翼,等.CFRP、Ti及其混合物粉尘云最低着火温度研究[J].安全与环境学报,2022,22(4):1919-1926.
|
7 |
|
8 |
|
9 |
江国栋,魏利平,滕海鹏,等.基于热重法的准东煤等转化率热解动力学模型[J].化工学报,2017,68(4):1415-1422.
|
10 |
|
11 |
郑泉兴,刘秀彩,吴添文,等.不同植物纤维的热解和燃烧特性研究[J].燃料化学学报,2022,50(6):747-756.
|
12 |
庞磊,马冉,高建村,等.粉尘云浓度对HDPE粉尘云最低着火温度的影响[J].中国安全生产科学技术,2017,13(5):5-9.
|
13 |
国家技术监督局. 粉尘云最低着火温度测定方法:GB/T 16429—1996 [S].北京:煤炭工业出版社,1996.
|
14 |
郭昊.锆粉尘云爆炸敏感性及其抑制研究[D].太原:中北大学,2019.
|
15 |
刘天奇.不同煤质煤尘云最低着火温度与最小着火能量试验[J].安全与环境学报,2020,20(4):1334-1339.
|
16 |
杜贝贝,谢树莲,王梦亮,等.中华蹄盖蕨抗番茄溃疡病菌活性物质提取工艺优化及其抑菌作用研究[J].食品工业科技,2019,40(24):1-7.
|
17 |
赵江平,高鑫,杨锦扬,等.基于交互正交试验的全麦粉粉尘云最低着火温度的影响研究[J].工业安全与环保,2023,49(11):55-59.
|
18 |
郑秋雨,齐宇萱,韩睿.聚丙烯粉尘最小点火能研究[J].山东化工,2022,51(20):186-189.
|
19 |
王庆慧,袁帅,卫园梦,等.基于交互正交实验的玉米淀粉粉尘云最低着火温度的影响因素研究[J].爆炸与冲击,2019,39(5):146-152.
|
20 |
郑秋雨,刘琳,刘天奇,等.HDPE粉尘云/层最低着火温度研究[J].塑料工业,2021,49(4):97-101.
|
21 |
何芬芬,林庆文,刘玲,等.热解气氛对油漆稀料和塑料共热解特性的影响[J].中国塑料,2021,35(11):32-37.
|
22 |
徐晓楠.溴化环氧树脂协同三氧化二锑阻燃PET热分解动力学研究[J].消防科学与技术,2010,29(5):416-419.
|
23 |
张博涛,张智健,王霁,等.两种木纤维粉尘热解及爆炸特性研究[J].林产工业,2024,61(1):20-25.
|
24 |
解启航,张金锋,李艳丽,等.7-ACA粉体燃爆机制的热动力学研究[J].中国安全科学学报,2017,27(11):49-54.
|
25 |
郭瑞,李南,张新燕,等.微米/纳米PMMA粉尘爆炸抑制过程中压力特性与热化学动力学的相关性[J].爆炸与冲击,2023,43(12):141-155.
|
26 |
赵融芳,叶树峰,谢裕生,等.焦煤、塑料和粉尘共热解失重分析[J].环境科学,2003(5):28-33.
|
27 |
李文军,陈姗姗,陈艳鹏,等.基于热重的煤热解反应动力学试验研[J].中国煤炭,2020,46(3):84-89.
|
28 |
张延松,李南,郭瑞,等.月桂酸与硬脂酸粉尘爆炸过程热解动力学与火焰传播特性关系[J].爆炸与冲击,2022,42(7):161-172.
|
29 |
孙焕红,李霞.Coats-Redfern积分法研究炼焦常用煤的热解特性[J].现代盐化工,2017,44(5):22-23.
|
30 |
糜梦星,邢献军,张学飞,等.基于分布式改良Coats-Redfern法的梧桐叶燃烧动力学研究[J].太阳能学报,2019,40(9):2672-2679.
|
31 |
张奇,白春华,梁慧敏.燃烧与爆炸[M].北京:北京理工大学出版社,2008.
|
/
〈 |
|
〉 |