Synthesis and Characterization of Hyperbranched Polyethylene-b-Polyester Copolymers

WEN Zhaoyang, ZHANG Zhichao, HAN Shuang, LI Shengyu

PDF(1483 KB)
PDF(1483 KB)
Plastics Science and Technology ›› 2025, Vol. 53 ›› Issue (03) : 36-42. DOI: 10.15925/j.cnki.issn1005-3360.2025.03.007
Theory and Research

Synthesis and Characterization of Hyperbranched Polyethylene-b-Polyester Copolymers

Author information +
History +

Abstract

Hydroxyl functionalized hyperbranched polyethylene (HBPE-OH) was prepared by thiol-ene click reaction between 2-mercaptoethanol and hyperbranched polyethylene. Using HBPE-OH as an initiator, racemic lactide and ε-caprolactone can be polymerized through ring opening polymerization using organic base 1,5,7-Triazabicylo[4.4.0]dec-5-ene (TBD) or di-n-butyl magnesium (MgBu2). It was found that the catalytic activity of the MgBu2/HBPE-OH catalytic system was higher than that of the TBD/HBPE-OH catalytic system. Thus, narrowly distributed (hyperbranched polyethylene)-b-(polylactide) and (hyperbranched polyethylene)-b-(polycaprolactone) block polymers were produced which were structurally characterized by 1H NMR spectroscopy and GPC. In addition, (hyperbranched polyethylene)-b-(polylactide)-b-(polycaprolactone) ternary block copolymers were prepared using a MgBu2/HBPE-OH catalyst and were characterized by nuclear magnetic resonance and GPC. The differential scanning calorimetry (DSC) characterization of the obtained block copolymer demonstrated that the glass transition temperature and melting point of the polymer increased with the increase of the length of the polyester chain segment. The ternary block copolymer has two melting points (200 ℃and 224 ℃) and a glass transition temperature of 136 ℃.

Key words

Hyperbranched polyethylene / Racemic lactide / ε-caprolactone / Ring opening polymerization / Block copolymers

Cite this article

Download Citations
WEN Zhaoyang , ZHANG Zhichao , HAN Shuang , et al. Synthesis and Characterization of Hyperbranched Polyethylene-b-Polyester Copolymers. Plastics Science and Technology. 2025, 53(03): 36-42 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.03.007

References

1
麦碧云,陈旭东.超支化聚乙烯的应用进展[J].合成材料老化与应用,2019,48(1):5-11.
2
张丹枫,樊帅,伏艳,等.支化聚乙烯的合成及结构与性能[J].高等学校化学学报,2013,34(8):6-11.
3
HE Z Y, LIANG Y R, YANG W H, et al. Random hyperbranched linear polyethylene: One step production of thermoplastic elastomer[J]. Polymer, 2015, 56: 119-122.
4
孔德忠.低密度聚乙烯/热塑性弹性体的电缆阻燃材料的制备及其性能研究[J].塑料科技,2024,52(1):59-62.
5
WANG J, YE Z, ZHU S J I, et al. Topology-engineered hyperbranched high-molecular-weight polyethylenes as lubricant viscosity-index improvers of high shear stability[J], 2007, 46: 1174-1178.
6
DONG Z M, YE Z B. Hyperbranched polyethylenes by chain walking polymerization: Synthesis, properties, functionalization, and applications[J]. Polymer Chemistry, 2012, 3(2): 286-301.
7
PETRIE K, DOCOSLIS A, VASIC S, et al. Non-covalent/non-specific functionalization of multi-walled carbon nanotubes with a hyperbranched polyethylene and characterization of their dispersion in a polyolefin matrix[J]. Carbon, 2011, 49: 3378-3382.
8
姜泽钰,彭晨,王宇,等.聚乙醇酸单体乙交酯合成研究进展[J].塑料科技,2023,51(12):94-98.
9
ZHANG H X, BAI H, WANG N, et al. The study of correlations among the process condition, structure and property for poly(l-lactide) fibers[J]. Journal of Engineered Fibers and Fabrics, 2023, 18: 1-13.
10
DENG D W, LI M X, LI F Q, et al. In vitro hydrolytic degradation properties of poly(D, L-lactic acid)/poly(L-lactide-co-ε-caprolactone) blend films[J]. Journal of Physics: Conference Series, 2022, 2256(1): 012026.
11
LOHMEIJER B G G, DUBOIS G, LEIBFARTH F, et al. Organocatalytic living ring-opening polymerization of cyclic carbosiloxanes[J]. Organic Letters, 2006, 8(21): 4683-4686.
12
刘金凤,者东梅,杨勇,等.生物降解塑料的分类和应用研究进展[J].塑料科技,2024,52(1):117-123.
13
VAN DER MEULEN I, GUBBELS E, HUIJSER S, et al. Catalytic ring-opening polymerization of renewable macrolactones to high molecular weight polyethylene-like polymers[J]. Macromolecules, 2011, 44(11): 4301-4305.
14
LAM C X F, SAVALANI M M, TEOH S H, et al. Dynamics of in vitro polymer degradation of polycaprolactone-based scaffolds: accelerated versus simulated physiological conditions[J]. Biomedical Materials, 2008, 3(3): 034108.
15
XU Y, XIONG Y, GUO S Y. Effect of liquid plasticizers on crystallization of PCL in soft PVC/PCL/plasticizer blends[J]. Journal of Applied Polymer Science, 2020, 137(24): 48803-48814.
16
CHENG A, SCHWARTZ Z, KAHN A, et al. Advances in porous scaffold design for bone and cartilage tissue engineering and regeneration[J]. Tissue Engineering Part B: Reviews, 2019, 25(1): 14-29.
17
PONJAVIC M, NIKOLIC M S, NIKODINOVIC-RUNIC J, et al. Controlled drug release carriers based on PCL/PEO/PCL block copolymers[J]. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 68(6): 308-318.
18
王晓珂,冯冰涛,殷茂峰,等.增韧改性聚乳酸基生物降解材料研究进展[J].塑料科技,2023,51(12):88-93.
19
李永超,孟祥宇,崔学强,等.马来酸酐接枝聚乳酸增容聚碳酸亚丙酯/聚乳酸共混体系的结构与性能研究[J].塑料科技,2021,49(6):7-10.
20
OLEDZKA E, PACHOWSKA D, ORŁOWSKA K, et al. Pamidronate-conjugated biodegradable branched copolyester carriers: synthesis and characterization[J], 2017, 22(7): 1063-1076.
21
WALCZAK J, CHRZANOWSKI M, KRUCIŃSKA I. Research on a nonwoven fabric made from multi-block biodegradable copolymer based on l-lactide, glycolide, and trimethylene carbonate with shape memory[J], 2017, 22(8): 1325-1340.
22
田勇,刘传玉,王文彬,等.2-巯基乙醇的合成与应用进展[J].黑龙江科学,2011,2(3):4-8.
23
SHEN X, LIU P, HE C X, et al. Surface PEGylation of polyacrylonitrile membrane via thiol-ene click chemistry for efficient separation of oil-in-water emulsions[J]. Separation and Purification Technology, 2021, 255: 117418.
24
MAZZOLINI J, BOYRON O, MONTEIL V, et al. Polyethylene end functionalization using radical-mediated thiol-ene chemistry: Use of polyethylenes containing alkene end functionality[J]. Macromolecules, 2011, 44(9): 3381-3387.
25
STUKENBROEKER T S, BANDAR J S, ZHANG X, et al. Cyclopropenimine superbases: Competitive initiation processes in lactide polymerization[J]. ACS Macro Letters, 2015, 4(8): 853-856.
26
MOINS S, HOYAS S, LEMAUR V, et al. Stereoselective ROP of rac- and meso-lactides using achiral TBD as catalyst[J]. Catalysts, 2020,10(6): 620.
27
ZHANG X, JONES G O, HEDRICK J L, et al. Fast and selective ring-opening polymerizations by alkoxides and thioureas[J]. Nature Chemistry, 2016, 8(11): 1047-1053.
28
D'AURIA I, TEDESCO C, MAZZEO M, et al. New homoleptic bis(pyrrolylpyridiylimino) Mg (ii) and Zn (ii) complexes as catalysts for the ring opening polymerization of cyclic esters via an "activated monomer" mechanism[J]. Dalton Transactions, 2017, 46(36): 12217-12225.
29
XU J X, LIU J J, LI ZJ, et al. Guanidinium as bifunctional organocatalyst for ring-opening polymerizations[J]. Polymer, 2018, 154: 17-26.
30
SARAZIN Y, LIU B, ROISNEL T, et al. Discrete, solvent-free alkaline-earth metal cations: Metal···fluorine interactions and ROP catalytic activity[J]. Journal of the American Chemical Society, 2011, 133(23): 9069-9087.
31
BRIGNOU P, PRIEBE GIL M, CASAGRANDE O, et al. Polycarbonates derived from green acids: Ring-opening polymerization of seven-membered cyclic carbonates[J]. Macromolecules, 2010, 43(19): 8007-8017.
32
LOHMEIJER B G G, PRATT R C, LEIBFARTH F, et al. Guanidine and amidine organocatalysts for ring-opening polymerization of cyclic esters[J]. Macromolecules, 2006, 39(25): 8574-8583.
33
KAMBER N E, JEONG W, WAYMOUTH R M, et al. Organocatalytic ring-opening polymerization[J]. Chemical Reviews, 2007, 107(12): 5813-5840.

Comments

PDF(1483 KB)

Accesses

Citation

Detail

Sections
Recommended

/