Preparation of Polylactic Acid and Research Progress of Mechanical Properties and Crystallinity Modification of its Composite Materials

ZHANG Alibumi, LÜ Xuyan, LU Xuecheng

PDF(855 KB)
PDF(855 KB)
Plastics Science and Technology ›› 2025, Vol. 53 ›› Issue (02) : 187-192. DOI: 10.15925/j.cnki.issn1005-3360.2025.02.034
Review

Preparation of Polylactic Acid and Research Progress of Mechanical Properties and Crystallinity Modification of its Composite Materials

Author information +
History +

Abstract

Polylactic acid (PLA), as a polymer with good biodegradability and biocompatibility, has shown extensive application potential in many fields such as aerospace, biomedical, food packaging, and so on. However, PLA also has some application limitations, such as high brittleness, low strength, and slow degradation rate. In order to overcome these limitations and further improve the performance of PLA, researchers have proposed various modification strategies, including adding nanomaterials for modification, adding biodegradable materials for modification, adding fiber materials for modification, crystallinity modification, compatibilization modification, functionalization modification, and copolymer grafting modification. The article briefly introduces the structure and two synthesis principles of polylactic acid (PLA) composite materials, and systematically reviews the principles of these modification methods and the effects of modified composite materials on mechanical properties and crystallinity. Finally, the future research directions of PLA composite material modification technology are prospected.

Key words

Polylactic acid / Modification / Biodegradation / Crystallinity / Composites

Cite this article

Download Citations
ZHANG Alibumi , LÜ Xuyan , LU Xuecheng. Preparation of Polylactic Acid and Research Progress of Mechanical Properties and Crystallinity Modification of its Composite Materials. Plastics Science and Technology. 2025, 53(02): 187-192 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.02.034

References

1
CISAR J, DROHSLER P, PUMMEROVA M, et al. Composite based on PLA with improved shape stability under high-temperature conditions[J]. Polymer, 2023, 276: 125943.
2
CHOUGAN M, GHAFFAR S H, AL-KHEETAN M J. Graphene-based nano-functional materials for surface modification of wheat straw to enhance the performance of bio-based polylactic acid composites[J]. Materials Today Sustainability, 2023, 21: 100308.
3
ARRIGO R, D'ANNA A, FRACHE A. Fully bio-based ternary polymer blends: Structural characterization and mechanical behavior[J]. Materials Today Sustainability, 2023, 21: 100314.
4
夏艺玮,李诗意,冯玉林,等.高耐热性聚乳酸/木粉复合材料的制备与性能研究[J].辽宁石油化工大学学报,2021,41(2):27-31.
5
OKUBO K, FUJII T, THOSTENSON E T. Multi-scale hybrid biocomposite: Processing and mechanical characterization of bamboo fiber reinforced PLA with microfibrillated cellulose[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(4): 469-475.
6
ZHANG Y C, WU H Y, QIU Y P. Morphology and properties of hybrid composites based on polypropylene/polylactic acid blend and bamboo fiber[J]. Bioresource Technology, 2010, 101(20): 7944-7950.
7
明璐,赵武学,康凯尔,等.聚乳酸材料增韧改性的研究进展[J].塑料科技,2023,51(7):116-120.
8
TRIVEDI A K, GUPTA M K, SINGH H. PLA based biocomposites for sustainable products: A review[J]. Advanced Industrial and Engineering Polymer Research, 2023: 382-395.
9
黄睿,李小全,卞福萍,等.功能化纳米纤维素复合PLA/PBAT薄膜的制备及性能[J].精细化工,2023,40(6):1253-1263.
10
YUSOFF R B, TAKAGI H, NAKAGAITO A N. Tensile and flexural properties of polylactic acid-based hybrid green composites reinforced by kenaf, bamboo and coir fibers[J]. Industrial Crops and Products, 2016, 94: 562-573.
11
ZUO Y F, LI W H, LI P, et al. Preparation and characterization of polylactic acid-g-bamboo fiber based on in-situ solid phase polymerization[J]. Industrial Crops and Products, 2018, 123: 646-653.
12
王晓珂,冯冰涛,殷茂峰,等.增韧改性聚乳酸基生物降解材料研究进展[J].塑料科技,2023,51(12):88-93.
13
DESTEFANO V, KHAN S, TABADA A. Applications of PLA in modern medicine[J]. Engineered Regeneration, 2020, 1: 76-87.
14
XIONG Z, LI C, MA S Q, et al. The properties of poly(lactic acid)/starch blends with a functionalized plant oil: Tung oil anhydride[J]. Carbohydrate Polymers, 2013, 95(1): 77-84.
15
KHOURI N G, BAHÚ J O, BLANCO-LLAMERO C, et al. Polylactic acid (PLA): Properties, synthesis, and biomedical applications—A review of the literature[J]. Journal of Molecular Structure, 2024, 1309: 138243.
16
CASTRO-AGUIRRE E, INIGUEZ-FRANCO F, SAMSUDIN H, et al. Poly(lactic acid)-Mass production, processing, industrial applications, and end of life[J]. Advanced Drug Delivery Reviews, 2016, 107: 333-366.
17
LASPRILLA A J R, MARTINEZ G A R, LUNELLI B H, et al. Poly-lactic acid synthesis for application in biomedical devices—A review[J]. Biotechnology Advances, 2012, 30(1): 321-328.
18
LI X R, LIN Y, LIU M L, et al. A review of research and application of polylactic acid composites[J]. Journal of Applied Polymer Science, 2023, 140(7): 22.
19
BAJPAI P K, SINGH I, MADAAN J. Development and characterization of PLA-based green composites: A review[J]. Journal of Thermoplastic Composite Materials, 2014, 27(1): 52-81.
20
LENDVAI L, FEKETE I. Preparation and characterization of poly(lactic acid)/boehmite alumina composites for additive manufacturing[J]. IOP Conference Series: Materials Science and Engineering, 2020, 903(1): 012057.
21
TISSERAT B, JOSHEE N, MAHAPATRA A K, et al. Physical and mechanical properties of extruded poly(lactic acid)-based Paulownia elongata biocomposites[J]. Industrial Crops and Products, 2013, 44: 88-96.
22
LAN X R, LI X, LIU Z Y, et al. Composition, morphology and properties of poly(lacticacid) and poly(butylene succinate) copolymer systemvia coupling reaction[J]. Journal of Macromolecular Science. Part A, Pure and Applied Chemistry, 2015, 52(12): 1060-1325.
23
TEE Y B, TALIB R A, ABDAN K, et al. Toughening poly(lactic acid) and aiding the melt-compounding with bio-sourced plasticizers[J]. Agriculture and Agricultural Science Procedia, 2014, 2: 289-295.
24
ALIAS N F, ISMAIL H. An overview of toughening polylactic acid by an elastomer[J]. Polymer-Plastics Technology and Materials, 2019, 58(13): 1399-1422.
25
RAJESHKUMAR G, ARVINDH SESHADRI S, DEVNANI G L, et al. Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites—A comprehensive review[J]. Journal of Cleaner Production, 2021, 310: 127483.
26
BAJPAI P K, SINGH I, MADAAN J. Development and characterization of PLA-based green composites: A review[J]. Journal of Thermoplastic Composite Materials, 2014, 27(1): 52-81.
27
樊丽梅,杜娟,贺龙强.聚乳酸/亚麻无纺布可降解复合材料的应用研究[J].塑料科技,2024,52(4):95-98.
28
刘丰颉,李伟,彭新洋,等.聚乳酸的制备、改性及应用进展研究[J].塑料科技,2024,52(5):156-160.
29
张春梅,宋玉,刘双会,等.聚乳酸/改性纤维素纳米晶的热稳定性和结晶性能[J].工程塑料应用,2020,48(6):103-107.
30
ARASH S, AKBARI B, GHALEB S, et al. Preparation of PLA-TPU-Nanoclay composites and characterization of their morphological, mechanical, and shape memory properties[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 139: 105642.
31
SHI X Y, BAI S N, LI Y Y, et al. Effect of polyethylene glycol surface modified nanodiamond on properties of polylactic acid nanocomposite films[J]. Diamond and Related Materials, 2020, 109: 108092.
32
陈晨,汪洋,汪香君,等.PLA/PBAT可降解地膜的制备技术和研究应用进展[J].塑料科技,2024,52(4):37-142.
33
FEKETE I, RONKAY F, LENDVAI L. Highly toughened blends of poly(lactic acid) (PLA) and natural rubber (NR) for FDM-based 3D printing applications: The effect of composition and infill pattern[J]. Polymer Testing, 2021, 99: 107205.
34
LI T, SUN H Y, HAN H, et al. Ultrafast bulk degradation of polylactic acid by artificially cultured diatom frustules[J]. Composites Science and Technology, 2022, 223: 109410.
35
LI T, SUN H Y, WU B Y, et al. High-performance polylactic acid composites reinforced by artificially cultured diatom frustules[J]. Materials & Design, 2020, 195: 109003.
36
CHEN Y, LU T T, LI L Y, et al. Fully biodegradable PLA composite with improved mechanical properties via 3D printing[J]. Materials Letters, 2023, 331: 133543.
37
MUZAFFA H, ASROFI M, SUJITO, et al. Effect of alkali treatment of piper betle fiber on tensile properties as biocomposite based polylactic acid: Solvent cast-film method[J]. Materials Today: Proceedings, 2022, 48: 761-765.
38
MOSHIUL ALAM A K M, BEG M D H, REDDY PRASAD D M, et al. Structures and performances of simultaneous ultrasound and alkali treated oil palm empty fruit bunch fiber reinforced poly(lactic acid) composites[J]. Composites Part A: Applied Science and Manufacturing, 2012, 43(11): 1921-1929.
39
RAJESH G, PRASAD A R, GUPTA A. Mechanical and degradation properties of successive alkali treated completely biodegradable sisal fiber reinforced poly lactic acid composites[J]. Journal of Reinforced Plastics and Composites, 2015, 34(12): 951-961.
40
SERRA-PARAREDA F, DELGADO-AGUILAR M, ESPINACH F X, et al. Sustainable plastic composites by polylactic acid-starch blends and bleached kraft hardwood fibers[J]. Composites Part B, 2022, 238: 109901.
41
CAI H, LU T L, JIANG Y, et al. Experimental and computational investigation on performances of the thermoplastic elastomer SEBS/Poly(lactic acid) blends[J]. Materials Today Communications, 2023, 35: 105600.
42
梁立嘉.马来酸酐三元共聚物的合成及其应用研究[D].西安:西安石油大学,2022.
43
HAN W S, WU M J, RONG J X, et al. Effect of functionalized nanodiamond on properties of polylactic acid eco-friendly composite films[J]. Diamond & Related Materials, 2023, 133: 109717.
44
POURIMAN H, LIN R, GRAHAM K, et al. Evaluating the grafting of maleic anhydride with poly(lactic acid) (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) via batch compounding[J/OL]. Materials Today: Proceedings, 2023,
45
ZHU P W, LIU S Q, FENG R, et al. Rigid epoxy microspheres reinforced and toughened polylactic acid through enhancement of interfacial reactivity[J]. Composites Science and Technology, 2023, 232: 109888.
46
SUN D X, HUANG C H, MAO Y T, et al. Fabricating polylactic acid-based blend composite with balanced stiffness-toughness and excellent shape memory performance by incorporating surface-modified carbon nanofibers[J]. Composites Science and Technology, 2022, 217: 109088.
47
SONG J, ZHANG R, LI S G. Properties of phosphorus-containing polybutylene succinate/polylactic acid composite film material and degradation process effects on physiological indexes of lettuce cultivation[J]. Polymer Testing, 2023, 119: 107921.
48
LULE Z C, KIM J. Surface treatment of lignocellulose biofiller for fabrication of sustainable polylactic acid biocomposite with high crystallinity and improved burning antidripping performance[J]. Materials Today Chemistry, 2022, 23: 100741.
49
GUAN J P, LUO W T, LU S F, et al. Synchronous toughening and strengthening of the immiscible polylactic acid/thermoplastic polyurethane (PLLA/TPU) blends via the interfacial compatibilization with Janus nanosheets[J]. Composites Science and Technology, 2022, 227: 109611.
50
杨安廷.纳米纤维素晶须/无机材料协同改性聚乳酸的研究[D].合肥:安徽农业大学,2022.
51
胡亚男.纤维素纳米晶体改性壳聚糖、聚乳酸复合材料的制备和性能研究[D].青岛:山东科技大学,2020.
52
GAUSS C, PICKERING K L. A new method for producing polylactic acid biocomposites for 3D printing with improved tensile and thermo-mechanical performance using grafted nanofibrillated cellulose[J]. Additive Manufacturing, 2023, 61: 103346.
53
MORTALÒ C, RUSSO P, MIORIN E, et al. Extruded composite films based on polylactic acid and sodium alginate[J]. Polymer, 2023, 282: 126162.
54
MURPHY C A, COLLINS M N. Microcrystalline cellulose reinforced polylactic acid biocomposite filaments for 3D printing[J]. Polymer Composites, 2018, 39: 1311-1320.

Comments

PDF(855 KB)

Accesses

Citation

Detail

Sections
Recommended

/