Performance Improving Strategies of Metal-organic Frame Electrocatalytic Materials

YU Ping, MA Fuying, LIU Ziqing

PDF(615 KB)
PDF(615 KB)
Plastics Science and Technology ›› 2025, Vol. 53 ›› Issue (02) : 174-179. DOI: 10.15925/j.cnki.issn1005-3360.2025.02.032
Review

Performance Improving Strategies of Metal-organic Frame Electrocatalytic Materials

Author information +
History +

Abstract

Metal-organic framework (MOFs) material is a kind of organic-inorganic hybrid material which is prepared by chemical reaction of organic ligand and precursor with metal ions. MOFs are highly valued in the field of electrocatalysis due to their unique crystalline structures, tunable pore sizes, shapes, and pore diameters. However, MOF materials used as electrocatalysts often suffer from poor stability and low catalytic activity. The article reviews strategies for enhancing the performance of MOF-based electrocatalytic materials from four aspects of microstructure regulation, ligand regulation, multimetal regulation, and the construction of defects or vacancies. It summarizes relevant research on MOF composite electrocatalysts and MOF-derived electrocatalysts, and also provides an outlook on the future application prospects of MOFs in the field of electrocatalysis.

Key words

Electrocatalysis / MOFs / Active site / Defect / Micro-control

Cite this article

Download Citations
YU Ping , MA Fuying , LIU Ziqing. Performance Improving Strategies of Metal-organic Frame Electrocatalytic Materials. Plastics Science and Technology. 2025, 53(02): 174-179 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.02.032

References

1
CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303.
2
XIAO X, TU J G, HUANG Z, et al. A cobalt-based metal-organic framework and its derived material as sulfur hosts for aluminum-sulfur batteries with the chemical anchoring effect[J]. Physical Chemistry Chemical Physics, 2021, 23(17): 10326-10334.
3
HOSSEINI S E, WAHID M A. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development[J]. Renewable and Sustainable Energy Reviews, 2016, 57: 850-866.
4
高梦磊,王凤武.MOFs衍生材料的研究进展[J].云南化工,2023,50(8):6-9.
5
KHAJAVI H, STIL H A, KUIPERS H P C E, et al. Shape and transition state selective hydrogenations using egg-shell Pt-MIL-101 (Cr) catalyst[J]. ACS Catalysis, 2013, 3(11): 2617-2626.
6
YAGHI O M, LI G, LI H.Selective binding and removal of guests in a microporous metal-organic framework[J]. Nature, 1995, 378(6558):703-706.
7
YAGHI O M, LI H.Hydrothermal synthesis of a metal-organic framework containing large rectangular channels[J]. Journal of the American Chemical Society, 1995, 117(41):p.10401-10402.
8
KITAGAWA S. Metal-organic frameworks (MOFs)[J]. Chemical Society Reviews, 2014, 43(16): 5415-5418.
9
HU J, CAO L J, WANG Z Y, et al. Hollow high-entropy metal organic framework derived nanocomposite as efficient electrocatalyst for oxygen reduction reaction[J]. Composites Communications, 2021, 27: 100866.
10
DU J, LI F, SUN L C. Metal-organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction[J]. Chemical Society Reviews, 2021, 50(4): 2663-2695.
11
SHEBERLA D, BACHMAN J C, ELIAS J S, et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance[J]. Nature materials, 2017, 16(2): 220-224.
12
LI H, EDDAOUDI M, O'KEEFFE M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402(6759): 276-279.
13
LI Y, ZHANG S S, SONG D T. A luminescent metal-organic framework as a turn-on sensor for dmf vapor[J]. Angewandte Chemie International Edition, 2013, 52(2): 710-713.
14
WANG B, CÔTÉ A P, FURUKAWA H, et al. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs[J]. Nature, 2008, 453(7192): 207-211.
15
BANERJEE R, PHAN A, WANG B, et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture[J]. Science, 2008, 319(5865): 939-943.
16
TAYLOR-PASHOW K M L, DELLA ROCCA J, XIE Z, et al. Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery[J]. Journal of the American Chemical Society, 2009, 131(40): 14261-14263.
17
AIJAZ A, KARKAMKAR A, CHOI Y J, et al. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: A double solvents approach[J]. Journal of the American Chemical Society, 2012, 134(34): 13926-13929.
18
ZHAO M T, YUAN K, WANG Y, et al. Metal-organic frameworks as selectivity regulators for hydrogenation reactions[J]. Nature, 2016, 539(7627): 76-80.
19
CAVKA J H, JAKOBSEN S, OLSBYE U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. Journal of the American Chemical Society, 2008, 130(42): 13850-13851.
20
RUNGTAWEEVORANIT B, BAEK J, ARAUJO J R, et al. Copper nanocrystals encapsulated in Zr-based metal-organic frameworks for highly selective CO2 hydrogenation to methanol[J]. Nano letters, 2016, 16(12): 7645-7649.
21
DUAN J J, CHEN S, ZHAO C. Ultrathin metal-organic framework array for efficient electrocatalytic water splitting[J]. Nature communications, 2017, 8(1): 15341.
22
BUTOVA V V, SOLDATOV M A, GUDA A A, et al. Metal-organic frameworks: structure, properties, methods of synthesis and characterization[J]. Russian Chemical Reviews, 2016, 85(3): 280.
23
BAO Y J, RU H F, WANG Y F, et al. Hetero MOF-on-MOF of Ni-BDC/NH2-MIL-88B (Fe) enables efficient electrochemical seawater oxidation[J]. Advanced Functional Materials, 2024: 2314611.
24
STOCK N, BISWAS S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites[J]. Chemical reviews, 2012, 112(2): 933-969.
25
LI J P, CHENG S J, ZHAO Q, et al. Synthesis and hydrogen-storage behavior of metal-organic framework MOF-5[J]. International Journal of Hydrogen Energy, 2009, 34(3): 1377-1382.
26
LOISEAU T, MELLOT-DRAZNIEKS C, MUGUERRA H, et al. Hydrothermal synthesis and crystal structure of a new three-dimensional aluminum-organic framework MIL-69 with 2, 6-naphthalenedicarboxylate (ndc), Al (OH)(ndc)·H2O[J]. Comptes Rendus Chimie, 2005, 8(3/4): 765-772.
27
SIMON N, MARROT J, LOISEAU T, et al. Hydrothermal synthesis and crystal structures of two open-framework fluorinated aluminum phosphates templated by 1, 3-diaminopropane (ULM-4 & MIL-64)[J]. Solid State Sciences, 2006, 8(11): 1361-1367.
28
LEE E J, BAE J, CHOI K M, et al. Exploiting microwave chemistry for activation of metal-organic frameworks[J]. ACS applied materials & interfaces, 2019, 11(38): 35155-35161.
29
LI S Q, HU X X, CHEN S Y, et al. Synthesis of γ-cyclodextrin metal-organic framework as ethylene absorber for improving postharvest quality of kiwi fruit[J]. Food Hydrocolloids, 2023, 136: 108294.
30
WEN M, SUN N N, JIAO L, et al. Microwave-assisted rapid synthesis of MOF-based single-atom Ni catalyst for CO2 electroreduction at ampere-level current[J]. Angewandte Chemie, 2024, 63(10): e202318338.
31
YANG B C, HUANG J, TONG J, et al. Microwave synthesis of Fe-Cu diatomic active center MOF: Synergistic cyclic catalysis of persulfate for degrading norfloxacin[J]. Environmental Science: Nano, 2023, 10(10): 2778-2789.
32
LI M, DINCĂ M. Selective formation of biphasic thin films of metal-organic frameworks by potential-controlled cathodic electrodeposition[J]. Chemical Science, 2014, 5(1): 107-111.
33
XIE S J, TAN X Y, XUE Z H, et al. Cathodic deposition-assisted synthesis of thin glass MOF films for high-performance gas separations[J]. Angewandte Chemie, 2024: e202401817.
34
JAMES S L, ADAMS C J, BOLM C, et al. Mechanochemistry: Opportunities for new and cleaner synthesis[J]. Chemical Society Reviews, 2012, 41(1): 413-447.
35
SHI X Y, LIANG W Q, LIU G P, et al. Electrode materials for Li/Na storage from mechanochemically synthesised MOFs/MXene composites: A solvent-free approach[J]. Chemical Engineering Journal, 2023, 462: 142271.
36
XU Y X, LI B, ZHENG S S, et al. Ultrathin two-dimensional cobalt-organic framework nanosheets for high-performance electrocatalytic oxygen evolution[J]. Journal of materials chemistry A, 2018, 6(44): 22070-22076.
37
HAI G T, JIA X L, ZHANG K Y, et al. High-performance oxygen evolution catalyst using two-dimensional ultrathin metal-organic frameworks nanosheets[J]. Nano Energy, 2018, 44: 345-352
38
CAI M K, LIU Q L, XUE Z Q, et al. Constructing 2D MOFs from 2D LDHs: A highly efficient and durable electrocatalyst for water oxidation[J]. Journal of materials chemistry A, 2020, 8(1): 190-195.
39
HUANG L, GAO G, ZHANG H, et al. Self-dissociation-assembly of ultrathin metal-organic framework nanosheet arrays for efficient oxygen evolution[J]. Nano Energy, 2020, 68: 104296.
40
SUN D, WONG L W, WONG H Y, et al. Direct visualization of atomic structure in multivariate metal-organic frameworks (MOFs) for guiding electrocatalysts design[J]. Angewandte Chemie International Edition, 2023, 62(4): e202216008.
41
JI Q Q, KONG Y, WANG C, et al. Lattice strain induced by linker scission in metal-organic framework nanosheets for oxygen evolution reaction[J]. ACS Catalysis, 2020, 10(10): 5691-5697.
42
SUN L Z, PAN X, XIE Y N, et al. Accelerated dynamic reconstruction in metal-organic frameworks with ligand defects for selective electrooxidation of amines to azos coupling with hydrogen production[J]. Angewandte Chemie International Edition, 2024, 63: e202402176.
43
FENG K, ZHANG D, LIU F F, et al. Highly efficient oxygen evolution by a thermocatalytic process cascaded electrocatalysis over sulfur-treated Fe-based metal-organic-frameworks[J]. Advanced Energy Materials, 2020, 10(16): 2000184.
44
GENG B, YAN F, ZHANG X, et al. Conductive CuCo-based bimetal organic framework for efficient hydrogen evolution[J]. Advanced Materials, 2021, 33(49): 2106781.
45
XU X F, CHEN H C, LI L F, et al. Leveraging metal nodes in metal-organic frameworks for advanced anodic hydrazine oxidation assisted seawater splitting[J]. ACS nano, 2023, 17(11): 10906-10917.
46
ZHOU W, WU Y P, WANG X, et al. Improved conductivity of a new Co (Ⅱ)-MOF by assembled acetylene black for efficient hydrogen evolution reaction[J]. Cryst Eng Comm, 2018, 20(33): 4804-4809.
47
WANG Q, ASTRUC D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis[J]. Chemical reviews, 2019, 120(2): 1438-1511.
48
FANG Z, BUEKEN B, DE VOS D E, et al. Defect-engineered metal-organic frameworks[J]. Angewandte Chemie International Edition, 2015, 54(25): 7234-7254.
49
DING J T, GUO D Y, WANG N S, et al. Defect engineered metal-organic framework with accelerated structural transformation for efficient oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2023, 62(43): e202311909.
50
ZHANG S, HUANG Z, ISIMJAN T T, et al. Accurately substituting Fe for Ni2 atom in Ni-MOF with defect-rich for efficient oxygen evolution reaction: Electronic reconfiguration and mechanistic study[J]. Applied Catalysis B: Environmental, 2024, 343: 123448.
51
LI S K, CHAI H R, ZHANG L, et al. Constructing oxygen vacancy-rich MXene@Ce-MOF composites for enhanced energy storage and conversion[J]. Journal of Colloid and Interface Science, 2023, 642: 235-245
52
XUE Z Q, LI Y L, ZHANG Y W, et al. Modulating electronic structure of metal-organic framework for efficient electrocatalytic oxygen evolution[J]. Advanced Energy Materials, 2018, 8(29): 1801564.
53
LIN Z, O'CONNELL G E P, WAN T, et al. Electrosynthesis of peracetic acid using in-situ generated H2O2 enabled by carbon-based bifunctional electrodes[J]. Chemical Engineering Journal, 2024, 481: 148736.
54
DAI F, WANG Z, XU H K J, et al. Metal-organic framework derived NiFe2O4/FeNi3@C composite for efficient electrocatalytic oxygen evolution reaction[J]. International Journal of Minerals, Metallurgy and Materials, 2023, 30(10): 1914-1921.
55
商文静,邓鑫,王炳昊,等.MoSe2/Co-MOF/NF复合材料的制备及电催化产氧性能[J].无机化学学报,2024,40(1):79-87.
56
ZHANG Z Q, ZHANG Z, CHEN X B, et al. Metal-organic framework-derived hollow nanocubes as stable noble metal-free electrocatalyst for water splitting at high current density[J]. CCS Chemistry, 2023, 6: 1324-1337.
57
YAO C, WANG Q, PENG C Y, et al. MOF-derived CoS2/WS2 electrocatalysts with sulfurized interface for high-efficiency hydrogen evolution reaction: Synthesis, characterization and DFT calculations[J]. Chemical Engineering Journal, 2024, 479: 147924.
58
LIU Y, YUE C L, SUN F Y, et al. Superhydrophilic molybdenum phosphide quantum dots on porous carbon matrix for boosting hydrogen evolution reaction[J]. Chemical Engineering Journal, 2023, 454: 140105.
59
DANG J E, YUN S N, ZHANG Y W, et al. Constructing double-shell structured N-C-in-Co/N-C electrocatalysts with nanorod- and rhombic dodecahedron-shaped hollow morphologies to boost electrocatalytic activity for hydrogen evolution and triiodide reduction reaction[J]. Chemical Engineering Journal, 2022, 449: 137854.

Comments

PDF(615 KB)

Accesses

Citation

Detail

Sections
Recommended

/