Pyrolysis Research Progress of Bio-based Polylactic Acid Plastics

SUN Xiyue, MENG De'an, WANG Miaomiao, REN Xueyu, DAN Zeng

PDF(1297 KB)
PDF(1297 KB)
Plastics Science and Technology ›› 2025, Vol. 53 ›› Issue (02) : 168-173. DOI: 10.15925/j.cnki.issn1005-3360.2025.02.031
Review

Pyrolysis Research Progress of Bio-based Polylactic Acid Plastics

Author information +
History +

Abstract

Conventional petroleum-based plastics are difficult to degrade and cause severe pollution. Polylactic acid (PLA) plastics, as a typical representative of biodegradable plastics derived from biological sources, have been widely applied in recent years. Although PLA plastics can be naturally degraded by microorganisms, the degradation products are hard to utilize effectively, leading to resource waste. Pyrolysis technology can convert PLA into small molecular compounds, forming gaseous, liquid, and solid products, thus achieving resource utilization. The article reviews the research status of PLA pyrolysis at home and abroad in recent years, summarizes the research progress on the pyrolysis characteristics, pyrolysis mechanism, and co-pyrolysis of PLA, and points out that the connection between PLA raw material properties, pyrolysis conditions, product properties, and applications should be strengthened in the future, and the synergistic effect of co-pyrolysis of PLA plastics and petroleum-based plastics should be studied.

Key words

Polylactic acid / Pyrolysis / Co-pyrolysis

Cite this article

Download Citations
SUN Xiyue , MENG De'an , WANG Miaomiao , et al . Pyrolysis Research Progress of Bio-based Polylactic Acid Plastics. Plastics Science and Technology. 2025, 53(02): 168-173 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.02.031

References

1
ZHANG F, ZHAO Y T, WANG D D, et al. Current technologies for plastic waste treatment: A review[J]. Journal of Cleaner Production, 2021, 282: 124523.
2
PILAPITIYA P G C N T, RATNAYAKE A S. The world of plastic waste: A review[J]. Cleaner Materials, 2024: 100220.
3
LEBRETON L, ANDRADY A. Future scenarios of global plastic waste generation and disposal[J]. Palgrave Communications, 2019, 5(1): 1-11.
4
毕晨曦.聚乳酸塑料在高温下水解降解的研究[D].大连:大连理工大学,2020.
5
NARANCIC T, O'CONNOR K E. Plastic waste as a global challenge: Are biodegradable plastics the answer to the plastic waste problem?[J]. Microbiology, 2019, 165(2): 129-137.
6
刘丰颉,李伟,彭新洋,等.聚乳酸的制备、改性及应用进展研究[J].塑料科技,2024,52(5):156-160.
7
ACHMAD F, YAMANE K, QUAN S, et al. Synthesis of polylactic acid by direct polycondensation under vacuum without catalysts, solvents and initiators[J]. Chemical Engineering Journal, 2009, 151(1/3): 342-350.
8
JEM K J, TAN B. The development and challenges of poly(lactic acid) and poly(glycolic acid)[J]. Advanced Industrial and Engineering Polymer Research, 2020, 3(2): 60-70.
9
ABE H, TAKAHASHI N, KIM K J, et al. Thermal degradation processes of end-capped poly (L-lactide) s in the presence and absence of residual zinc catalyst[J]. Biomacromolecules, 2004, 5(4): 1606-1614.
10
谢彬,白茸茸,孙华山,等.聚乳酸塑料合成、生物降解及其废弃物处置的研究进展[J].生物工程学报,2023,39(5):1912-1929.
11
孙荔子.“双碳”背景下聚乳酸项目的综合效益评价研究[D].蚌埠:安徽财经大学,2024.
12
CHIEN Y C, LIANG C J, YANG S H. Exploratory study on the pyrolysis and PAH emissions of polylactic acid[J]. Atmospheric Environment, 2011, 45(1): 123-127.
13
孙策,吕闪闪,张化腾,等.聚乳酸及其复合材料降解的研究进展[J].塑料,2018,47(6):114-117.
14
李密.聚乳酸功能复合膜的设计、开发与在生鲜食品中的应用研究[D].无锡:江南大学,2021.
15
OMURA M, TSUKEGI T, SHIRAI Y, et al. Thermal degradation behavior of poly(lactic acid) in a blend with polyethylene[J]. Industrial Engineering Chemistry Research, 2006, 45: 2949-2953.
16
OHKITA T, LEE S H. Thermal degradation and biodegradability of poly(lactic acid)/corn starch biocomposites[J]. Journal of Applied Polymer Science, 2006, 100(4): 3009-3017.
17
王刚,李爱民,李建丰.基于TG/FT-IR, Py-GC/MS的聚乳酸塑料热降解研究[J].高校化学工程学报,2009,23(6):957-961.
18
雷源.典型可降解与不可降解塑料的热解特性研究[D].保定:河北大学,2023.
19
韩笑,陈超,李荣国,等.PLA基可降解包装材料的回收利用研究进展[J].塑料工业,2024,52(6):10-16.
20
朱金唐,石双友,施永明,等.循环经济视角下聚乳酸的制备、回收和再利用[J].纺织科学研究,2024():26-30.
增刊2
21
周先悦.聚乳酸(PLA)、双酚A型聚碳酸酯(BPA-PC)的化学降解策略研究[D].青岛:青岛科技大学,2022.
22
闵诚.乳酸锌/碳酸氢钠催化废弃聚乳酸醇解研究[D].南京:南京大学,2021.
23
朱晓旭,刘福胜,宋修艳.聚乳酸材料的化学解聚研究进展[J].高分子材料科学与工程,2022,38(9):176-181.
24
时宇.废塑料热裂解技术[J].当代化工,2020,49(12):2840-2843.
25
李晓娜,潘超,宋洋,等.典型塑料与生物质废弃物的共热解技术及高值化利用[J].环境科学研究,2023,36(9):1765-1778.
26
HAMAD K, KASEEM M, YANG H W, et al. Properties and medical applications of polylactic acid: A review[J]. Express Polymer Letters, 2015, 9(5):101770712.
27
NASER A Z, DEIAB I, DARRAS B M. Poly(lactic acid)(PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: A review[J]. RSC Advances, 2021, 11(28): 17151-17196.
28
MASUTANI K, KIMURA Y. Present situation and future perspectives of poly(lactic acid)[J]. Synthesis, Structure and Properties of Poly(lactic acid)[M]. Springer Nature Link, 2017: 1-25.
29
陶瑶.聚乳酸/明胶共混材料的性能及降解行为研究[D].贵州:贵州大学,2023.
30
NIM B, OPAPRAKASIT P. Quantitative analyses of products from chemical recycling of polylactide (PLA) by alcoholysis with various alcohols and their applications as healable lactide-based polyurethanes[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 255: 119684.
31
邓亮.生物基可降解聚乳酸材料的高性能化研究[D].合肥:中国科学技术大学,2019.
32
GUPTA B, REVAGADE N, HILBORN J. Poly (lactic acid) fiber: An overview[J]. Progress in Polymer Science, 2007, 32(4): 455-482.
33
MCNEILL I C, LEIPER H A. Degradation studies of some polyesters and polycarbonates—1. Polylactide: General features of the degradation under programmed heating conditions[J]. Polymer Degradation and Stability, 1985, 11(3): 267-285.
34
张帆.超临界二氧化碳对3D打印聚乳酸废物气化影响研究[D].天津:天津商业大学,2023.
35
SAEAUNG K, PHUSUNTI N, PHETWAROTAI W, et al. Catalytic pyrolysis of petroleum-based and biodegradable plastic waste to obtain high-value chemicals[J]. Waste Management, 2021, 127: 101-111.
36
CORNELISSEN T, YPERMAN J, REGGERS G, et al. Flash co-pyrolysis of biomass with polylactic acid. Part 1: Influence on bio-oil yield and heating value[J]. Fuel, 2008, 87(7): 1031-1041.
37
ARRIETA M P, PARRES F, LÓPEZ J, et al. Development of a novel pyrolysis-gas chromatography/mass spectrometry method for the analysis of poly(lactic acid) thermal degradation products[J]. Journal of Analytical and Applied Pyrolysis, 2013, 101: 150-155.
38
李荣秋.聚乳酸薄膜的降解行为及其降解性能快速检测方法研究[D].绵阳:西南科技大学,2016.
39
LV S S, ZHANG Y H, TAN H Y. Thermal and thermo-oxidative degradation kinetics and characteristics of poly(lactic acid) and its composites[J]. Waste Management, 2019, 87: 335-344.
40
PIRES M, MURARIU M, CARDOSO A M, et al. Thermal degradation of poly(lactic acid)-zeolite composites produced by melt-blending[J]. Polymer Bulletin, 2020, 77(4): 2111-2137.
41
ZOU H T, YI C H, WANG L X, et al. Thermal degradation of poly(lactic acid) measured by thermogravimetry coupled to Fourier transform infrared spectroscopy[J]. Journal of Thermal Analysis and Calorimetry, 2009, 97: 929-935.
42
KOPINKE F D, REMMLER M, MACKENZIE K, et al. Thermal decomposition of biodegradable polyesters—Ⅱ. Poly(lactic acid)[J]. Polymer Degradation and Stability, 1996, 53(3): 329-342.
43
SUN C, LI W L, CHEN X J, et al. Synergistic interactions for saving energy and promoting the co-pyrolysis of polylactic acid and wood flour[J]. Renewable Energy, 2021, 171: 254-265.
44
孙策.聚乳酸与林源生物质的共热解行为及热解机制研究[D].哈尔滨:东北林业大学,2023.
45
USACHEV S V, LOMAKIN S M, KOVERZANOVA E V, et al. Thermal degradation of various types of polylactides research. The effect of reduced graphite oxide on the composition of the PLA4042D pyrolysis products[J]. Thermochimica Acta, 2022, 712: 179227.
46
BADIA J D, SANTONJA B L, MARTINEZ F A, et al. A methodology to assess the energetic valorization of bio-based polymers from the packaging industry: Pyrolysis of reprocessed polylactide[J]. Bioresource Technology, 2012, 111: 468-475.
47
SUN C, LI C X, TAN H Y, et al. Synergistic effects of wood fiber and polylactic acid during co-pyrolysis using TG-FTIR-MS and Py-GC/MS[J]. Energy Conversion and Management, 2019, 202: 112212.
48
冯舒勤,张乃文,任杰.聚乳酸的热降解与稳定性[J].塑料,2011,40(1):59-62.
49
姚若兰,李晓莲,杨海亮,等.聚乳酸热解行为及其机理分析[J].浙江理工大学学报:自然科学版,2022,47(6):799-805.
50
UNDRI A, ROSI L, FREDIANI M, et al. Conversion of poly(lactic acid) to lactide via microwave assisted pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2014, 110: 55-65.
51
ZHOU Q Y, XANTHOS M. Nanosize and microsize clay effects on the kinetics of the thermal degradation of polylactides[J]. Polymer Degradation and Stability, 2009, 94(3): 327-338.
52
HERRERA K W A, LORÍA B M I, PÉREZ P Y, et al. Thermal degradation of poly(caprolactone), poly(lactic acid), and poly(hydroxybutyrate) studied by TGA/FTIR and other analytical techniques[J]. Polymer Bulletin, 2018, 75: 4191-4205.
53
VOGEL C, SIESLER H W. Thermal degradation of poly(ε‐caprolactone), poly(L‐lactic acid) and their blends with poly (3‐hydroxy-butyrate) studied by TGA/FT-IR spectroscopy[J]. Macromolecular Symposia, 2008, 265(1): 183-194.
54
SUN C, YANG Z Q, ZHENG Z H, et al. Exploring how lignin promoting the co-pyrolysis with polylactic acid: Artificial neural network modeling, kinetic analysis and product distribution[J]. Sustainable Materials and Technologies, 2023, 35: e00549.
55
OZDEMIR E, TINCER T, HACALOGLU J. Characterization of polylactide/poly(ethylene glycol) blends via direct pyrolysis mass spectrometry[J]. Journal of Analytical and Applied Pyrolysis, 2016, 122: 315-322.
56
邵凡,王菁,赵可昕,等.废塑料催化热解催化剂的进展[J].塑料,2023,52(6):88-94.
57
SARKER M, RASHID M M, MOLLA M. Abundant high-density polyethylene (HDPE-2) turns into fuelby using of HZSM-5 catalyst[J]. Journal of Fundamentals of Renewable Energy and Applications, 2011, DOI: 10.4303/JFREA/R110201.
58
靳知远,王菁,马跃,等.废旧聚苯乙烯塑料的催化热解研究进展[J].塑料,2022,51(6):113-120.
59
GAO F. Pyrolysis of Waste Plastics into Fuels[D].Christchurch:University of Canterbury,2010.
60
翟好山,王学涛,邢利利,等.废塑料催化热解技术及其催化剂研究进展[J].工业催化,2023,31(4):1-8.
61
GANG W, AIMIN L I. Thermal decomposition and kinetics of mixtures of polylactic acid and biomass during copyrolysis[J]. Chinese Journal of Chemical Engineering, 2008, 16(6): 929-933.
62
SUN C, CHEN X J, ZHENG D Y, et al. Exploring the synergetic effects of the major components of biomass additives in the pyrolysis of polylactic acid[J]. Green Chemistry, 2021, 23(22): 9014-9023.

Comments

PDF(1297 KB)

Accesses

Citation

Detail

Sections
Recommended

/