Research on Combustion and Explosion Sensitivity Characteristics of Polypropylene Dust

ZHENG Qiuyu, WANG Jinyu, QI Yuxuan, ZHANG Yan

PDF(945 KB)
PDF(945 KB)
Plastics Science and Technology ›› 2025, Vol. 53 ›› Issue (02) : 122-126. DOI: 10.15925/j.cnki.issn1005-3360.2025.02.022
Process and Control

Research on Combustion and Explosion Sensitivity Characteristics of Polypropylene Dust

Author information +
History +

Abstract

During the production and processing of polypropylene, the fine dust generated is prone to combustion and explosion accidents. Targeting two typical ignition sources, electrical sparks and high-temperature surface objects, the study investigated the combustion sensitivity of suspended and accumulated polypropylene dust using a minimum ignition energy test apparatus for dust clouds, an electrostatic spark sensitivity tester, and a minimum ignition temperature test apparatus for dust clouds/layers. The results indicate that the minimum ignition energy of 10~13, 18~23, 25~38 μm polypropylene dust clouds is significantly lower than that of 48~75 μm dust clouds. The minimum ignition energy of polypropylene dust clouds shows a trend of first decreasing then increasing with the rise of dust concentration, powder injection pressure, and ignition delay time. In accumulated state, the minimum ignition energy gradually increases with particle size, indicating reduced electrostatic spark sensitivity. Under single-variable conditions, the minimum ignition temperature of polypropylene dust clouds displays inflection points with increasing particle size due to dust agglomeration phenomena.

Key words

Polypropylene dust / Dust explosion / Minimum ignition energy / Minimum ignition temperature / Electrostatic spark sensitivity

Cite this article

Download Citations
ZHENG Qiuyu , WANG Jinyu , QI Yuxuan , et al. Research on Combustion and Explosion Sensitivity Characteristics of Polypropylene Dust. Plastics Science and Technology. 2025, 53(02): 122-126 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.02.022

References

1
HAMZAH N F, KASMANI R M, CHANDREN S, et al. Effect of metal coating on physicochemical properties of ceramic foam for flame suppression application[J]. Ceramics International, 2023, 49 (22PB): 36646-36658.
2
邹天宇,杜勋军,张彤.粉尘爆炸与防控措施[J].电气防爆,2023(5):28-30.
3
吴雪梅,朱顺兵,吴佳梦,等.高密度聚乙烯粉尘燃爆特性及泄爆实验研究[J].中国安全生产科学技术,2023,19(10):144-150.
4
江丙友,丁大伟,苏明清,等.聚磷酸铵对聚乙烯粉尘爆炸特性及热解动力学影响研究[J].化工学报,2023,74(10):4352-4366.
5
程健维,罗望,王健,等.改性膨润土材料抑制PMMA粉尘爆炸火焰传播效果研究[J].消防科学与技术,2023,42(7):920-924, 949.
6
孟坤.2021—2022年世界塑料工业进展(Ⅰ):通用塑料[J].塑料工业,2023,51(3):1-18.
7
窦立岩,汪丽梅.聚丙烯研究进展及应用[J].山东化工,2023,52(18):104-105, 108.
8
蒯念生,黄卫星,袁旌杰,等.点火能量对粉尘爆炸行为的影响[J].爆炸与冲击,2012,32(4):432-438.
9
谭汝媚,李仕雄,刘东.高湿度下点火延迟时间对粉尘爆炸参数的影响[J].中北大学学报:自然科学版,2013,34(6):653-657.
10
MENČÍK M, KURACINA R, SZABOVÁ Z, et al. Determination of fire and explosion characteristics of dust[J].Transactions of the VŠB-Technical University of Ostrava, Safety Engineering Series, 2016, 11(2): 36-44.
11
刘学武,林晖,徐峰,等.ABS树脂粉尘爆炸特性研究[J].石油化工安全环保技术,2010,26(3):36-40, 60,69.
12
黄兆谦.可燃粉尘的静电最小点火能及其影响因素探讨[J].静电,1995,10(4):48-50.
13
CASHDOLLAR K L. Overview of dust explosibility characteristics[J]. Journal of Loss Prevention in the Process Industries, 2000, 13(3/5): 183-199.
14
STAHMER K W, GERHOLD M. Study of the explosion reactions of sucrose, activated charcoal, polyethylene and lignite part 1: effect of variation in particle surface area upon explosion reaction[J]. Journal of Loss Prevention in the Process Industries, 2017, 46: 177-184.
15
STAHMER K W, GERHOLD M. Study of the explosion reactions of sucrose, activated charcoal, polyethylene and lignite part 2: Study of the gas phase following the explosion reaction[J]. Journal of Loss Prevention in the Process Industries, 2017, 48: 216-222.
16
庞磊,马冉,高建村,等.粉尘云浓度对HDPE粉尘云最低着火温度的影响[J].中国安全生产科学技术,2017,13(5):5-9.
17
MITTAL M, GUHA B K. Study of ignition temperature of a polyethylene dust cloud[J]. Fire and Materials, 1996, 20(2): 97-105.
18
MITTAL M, GUHA B K. Minimum ignition temperature of polyethylene dust: A theoretical model[J]. Fire and Materials, 1997, 21(4): 169-177.
19
DOBASHI R. Risk of dust explosions of combustible nanomaterials [J]. Journal of Physics: Conference Series, 2009, 170 (1): 012029 6pp).
20
SUN J H, DOBASHI R, HIRANO T. Temperature profile of particles across the combustion zone propagating through an iron particle cloud[J]. Journal of Loss Prevention in the Process Industries, 2001, 14: 463-467.
21
SUN J H, DOBASHI R, HIRANO T. Concentration profile of particles across a flame propagating through an iron particle cloud[J]. Combustion and Flame, 2003, 134(4): 381-387.
22
陈成.铝粉及TNT粉尘的最小点火能和爆炸下限研究[D].太原:中北大学,2013.
23
张新燕.纳米PMMA粉尘爆炸火焰传播特性研究[D].大连:大连理工大学,2018.
24
张云,贾月,杨振欣,等.MgH2粉尘火焰传播过程与热辐射特性[J].火炸药学报,2023,46(2):157-162.
25
苏浩,仲海霞,曹勇,等.锆金属粉尘云最小点火能和最低着火温度的试验研究[J].爆破器材,2019,48(2):25-31, 36.
26
吴林,周曦禾,崔忠文,等.马尾松粉尘云最小着火能点火延迟时间的研究[J].木材加工机械,2018,29(4):16-19, 28.
27
卫少洁,谭迎新.不同浓度下点火延长时间对煤粉点火能的影响[J].中国粉体技术,2016,22(6):32-34.
28
张云,赵懿明,谭迎新,等.粒径对煤粉云最低着火温度特性的影响[J].爆破器材,2021,50(6):37-42.
29
冯长根,姚本林,刘振翼,等.CFRP、Ti及其混合物粉尘云最低着火温度研究[J].安全与环境学报,2022,22(4):1919-1926.
30
郑秋雨,刘琳,刘天奇,等.HDPE粉尘云/层最低着火温度研究[J].塑料工业,2021,49(4):97-101, 106.

Comments

PDF(945 KB)

Accesses

Citation

Detail

Sections
Recommended

/