Synthesis and Properties Study of Biodegradable Poly(glycolide-co-caprolactone) Copolyesters

YIN Tian, DU Xiaoqiang, LIU Tianyuan, XU Jun

PDF(2057 KB)
PDF(2057 KB)
Plastics Science and Technology ›› 2025, Vol. 53 ›› Issue (02) : 103-110. DOI: 10.15925/j.cnki.issn1005-3360.2025.02.019
Biological and Degradable Material

Synthesis and Properties Study of Biodegradable Poly(glycolide-co-caprolactone) Copolyesters

Author information +
History +

Abstract

Polyglycolic acid (PGA) has excellent degradation performance and mechanical strength, but its poor toughness limits its further application to some extent. In order to fully utilize the excellent degradation performance and mechanical strength of PGA, and to improve its toughness and processing performance, a copolymer of poly(glycolide-co-caprolactone) copolyesters (PGACL) was prepared through the ring-opening polymerization of glycolide and ε-caprolactone, starting from the molecular chain structure. The properties of PGACL were further regulated by the chain extender 1,4-butanediol glycidyl ether (BDE). By determining the optimal amount of initiator, the effects of the content of glycolide and chain extender on the mechanical properties, thermal properties, and degradation performance of copolyesters were studied. The results showed that increasing the glycolide content significantly enhanced the thermal properties, crystallinity, and mechanical strength of the copolyester. The introduction of the chain extender greatly improved the toughness of PGACL, while the synthesized PGACL copolymer maintained good degradability.

Key words

Poly(glycolide-co-caprolactone) / PGA / Glycolide / Chain extender / Biodegradation

Cite this article

Download Citations
YIN Tian , DU Xiaoqiang , LIU Tianyuan , et al. Synthesis and Properties Study of Biodegradable Poly(glycolide-co-caprolactone) Copolyesters. Plastics Science and Technology. 2025, 53(02): 103-110 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.02.019

References

1
严冰,赵耀明.聚丙交酯及可降解脂肪族聚酯类纤维的结构与生物降解性能[J].合成纤维,2000(3):16⁃19.
2
董露茜,徐芳,翁云宣.聚乙醇酸改性及其应用研究进展[J].中国塑料,2022,35(4):166-174.
3
SAMANTARAY P K, LITTLE A, HADDLETON D M, et al. Poly(glycolic acid) (PGA): A versatile building block expanding high performance and sustainable bioplastic applications[J]. Green Chemistry, 2020, 22(13): 4055-4081.
4
NIU D Y, WANG H, LIU B, et al. Crystal structure of poly(glycolic acid) β form[J]. Macromolecules, 2023, 56(21): 8767-8775.
5
NIU D Y, WANG H, MA Y, et al. A β-form crystal modification of poly(glycolic acid): Formation, stabilization, and β-α transition[J]. Macromolecules, 2023, 56(16): 6316-6327.
6
CHU C C. Differential scanning calorimetric study of the crystallization kinetics of polyglycolic acid at high undercooling[J]. Polymer,1980, 21(12): 1480-1482.
7
YU C T, BAO J N, PAN P J, et al. Crystallization behavior and crystalline structural changes of polyIJglycolic acid) investigated via temperature-variable WAXD and FTIR analysis[J]. Cryst Eng Comm, 2016, 18(40): 7894-7902.
8
SATO H, MAI M D, YAMAMOTO S K, et al. C-H/O(ether) hydrogen bonding along the (110) direction in polyglycolic acid studied by infrared spectroscopy, wide-angle X-ray diffffraction, quantum chemical calculations and natural bond orbital calculations[J]. Cryst Eng Comm, 2016, 18: 7894-7902.
9
NIU D Y, XU P W, XU S J, et al. Robust poly(glycolic acid) films with crystal orientation and reinforcement of chain entanglement network[J]. Chinese Journal of Polymer Science, 2023, 41: 1093-1103.
10
谭博雯,孙朝阳,计扬.聚乙醇酸的合成、改性与性能研究综述[J].中国塑料,2021,35(10):137-146.
11
田虎虎,曹鸿璋,郭立影,等.完全生物降解聚乙醇酸研究进展[J].橡塑技术与装备,2021,47(22):9-15.
12
YAMANE K, SATO H, ICHIKAWA Y, et al. Development of an industrial production technology for high-molecular-weight polyglycolic acid[J]. Polymer Journal, 2014, 46: 769-775.
13
陈群,许平,崔爱军.煤基聚乙醇酸技术进展[J].化工进展,2011,30(1):172-180.
14
李建军.2022年中国可降解塑料行业研究报告[J].中国石油和化工,2022(12):20.
15
冯申,温亮,孙朝阳.PGA/PBAT复合材料的性能及应用研究[J].中国塑料,2020,34(11):36-40.
16
XU P W, TAN S, NIU D Y, et al. Highly toughened sustainable green polyglycolic acid/ polycaprolactone blends with balanced strength: Morphology evolution, interfacial compatibilization, and mechanism[J]. ACS Applied Polymer Materials, 2022, 4(8): 5772-5780.
17
CHANG L F, ZHOU Y G, NING Y, et al. Toughening effect of physically blended polyethylene oxide on Polygly-colic acid[J]. Journal of Polymers and the Environment,2020,28(8):2125-2136.
18
华幼卿,金日光.高分子物理[M].北京:化学工业出版社,2019.
19
DOBRZYNSKI P, LI S, KASPERCZYK J, et al. Structure-property relationships of copolymers obtained by ring-opening polymerization of glycolide and ε-caprolactone. part 1. synthesis and characterization[J]. Biomacromolecules, 2005, 6: 483-488.
20
MARTINE T, ALAIN F. Determination of the degree of randomness in condensation copolymers containing both symmetrical and unsymmetrical monomer units: A theoretical study[J]. e-Polymers, 2003, 3(1): 030.
21
LIU T Y, XU P Y, HUANG D, et al. Enhanced degradation of poly(ethylene terephthalate) by the addition of lactic acid/glycolic acid: Composting degradation, seawater degradation behavior and comparison of degradation mechanism[J]. Journal of Hazardous Materials, 2023, 446: 130670.
22
CHU C C. Hydrolytic degradation of polyglycolic acid: Tensile strength and crystallinity study[J]. Journal of Applied Polymer Science, 1981, 26(5): 1727-1734.
23
HURRELL S, MILROY G E, CAMERON R E. The degradation of polyglycolide in water and deuterium oxide. part 1: The effect of reaction rate[J]. Polymer, 2003, 44(5): 1421-1424.
24
GÖKTÜRK E, PEMBA A G, MILLER S A. Polyglycolic acid from the direct polymerization of renewable C1 feedstocks[J]. Polymer Chemistry, 2015, 6: 3918-3925.
25
HURRELL S, MILROY G E, CAMERON R E. The distribution of water in degrading polyglycolide. Part Ⅱ: Sample size and drug release[J]. Journal of Materials Science: Materials in Medicine, 2003, 14(5): 457-464.
26
TSUJI H. Poly(lactide) stereocomplexes: Formation, structure, properties, degradation, and applications[J]. Macromolecular Bioscience, 2005, 5(7): 569-597.
27
TSUJI H. In vitro hydrolysis of blends from enantiomeric poly(lactide)s part 1. Well-stereo-complexed blend and non-blended films[J]. Polymer, 2000, 41(10): 3621-3630.
28
LAYCOCK B, NIKOLIC´ M, COLWELL J M, et al. Lifetime prediction of biodegradable polymers[J]. Progress in Polymer Science, 2017, 71: 144-189.
29
LIU T Y, DAN H, JI J J, et al. Biobased seawater-degradable poly(butylene succinate-L-lactide) copolyesters: exploration of degradation performance and degradation mechanism in natural seawater[J]. ACS Sustainable Chemistry & Engineering, 2022, 10: 3191-3202.
30
WOODARD L N, GRUNLAN M A. Hydrolytic degradation and erosion of polyester biomaterials[J]. 2018, 7: 976-982.
31
SHAWE S, BUCHANAN F, HARKIN-JONES E, et al. A study on the rate of degradation of the bioabsorbable polymer polyglycolic acid (PGA)[J]. Journal of Materials Science, 2006, 41(15): 4832-4838.

Comments

PDF(2057 KB)

Accesses

Citation

Detail

Sections
Recommended

/