Research Progress of Polylactic Acid Toughened by Degradable Materials

CHEN Rongyuan, ZHANG Fupeng, GUO Huan, LEI Yu, HAN Lin, ZHANG Zhonghou, FANG Shaoming

PDF(644 KB)
PDF(644 KB)
Plastics Science and Technology ›› 2025, Vol. 53 ›› Issue (01) : 167-172. DOI: 10.15925/j.cnki.issn1005-3360.2025.01.031
Review

Research Progress of Polylactic Acid Toughened by Degradable Materials

Author information +
History +

Abstract

Polylactic acid (PLA) is a biodegradable, renewable, and high-performance biopolyester. However, its inherent brittleness restricts its broader application, making toughening modification a hot spot of its research. The use of non-biodegradable materials will weaken the degradation performance of PLA, so the adoption of biodegradable materials has become the preferred strategy for toughening PLA. The paper outlines the structural characteristics and current development of PLA, summarizes the research progress of using biodegradable materials to prepare fully biodegradable PLA composites at home and abroad, focuses on the advantages, disadvantages and improvement methods of biodegradable plastics [polybutylene adipate/terephthalate (PBAT), polybutylene succinate (PBS), polycaprolactone (PCL), polyhydroxybutyrate (PHB)] and natural polymers (natural fiber, starch, vegetable oil) to toughen PLA, and points out the problems faced in toughening and modifying PLA. It is pointed out that the enhancement of the interfacial compatibility between the multiphase systems and the overall improvement of the comprehensive performance of the materials are the important directions for future research on fully degradable materials.

Key words

Polylactic acid / Degradable material / Toughening / Elongation at break

Cite this article

Download Citations
CHEN Rongyuan , ZHANG Fupeng , GUO Huan , et al . Research Progress of Polylactic Acid Toughened by Degradable Materials. Plastics Science and Technology. 2025, 53(01): 167-172 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.01.031

References

1
丁诗娟,朱西诗,陈慧榕,等.生物质秸秆/聚乳酸材料的制备及成型研究进展[J].绿色包装,2021(6):38-42.
2
ZHANG M, BIESOLD G M, CHOI W, et al. Recent advances in polymers and polymer composites for food packaging[J]. Materials Today, 2022, 53: 134-161.
3
PESARANHAJIABBAS E, MISRA M, MOHANTY A K. Recent progress on biodegradable polylactic acid based blends and their biocomposites: A comprehensive review[J]. International Journal of Biological Macromolecules, 2023, DOI: 10.1016/j.ijbiomac.2023.126231.
4
SHEKHAR N, MONDAL A. Synthesis, properties, environmental degradation, processing, and applications of polylactic acid (PLA): An overview[J]. Polymer Bulletin, 2024, DOI: 10.1007/s00289-024-05252-7.
5
LI Y, WANG S, QIAN S, et al. Depolymerization and Re/Upcycling of biodegradable PLA plastics[J]. ACS Omega, 2024, 9(12): 13509-13521.
6
董延茂,钟文芯,周兴,等.热塑性聚氨酯弹性体/聚乳酸复合材料的配方与性能研究[J].橡胶工业,2022,69(6):439-444.
7
HAN W S, WU M J, RONG J X, et al. Effect of functionalized nanodiamond on properties of polylactic acid eco-friendly composite films[J]. Diamond and Related Materials, 2023, DOI: 10.1016/j.diamond.2023.109717.
8
陈荣源,陶林娜,赵凌锋,等.聚乳酸/聚乙烯复合材料的制备与性能[J].塑料,2023,52(3):166-171.
9
王景昌,李鑫,陈瑞,等.支化聚乳酸的合成及其在生物医学领域中的应用[J].塑料科技,2022,50(6):114-118.
10
SHAHDAN D, ROSLI N A, CHEN R S, et al. Strategies for strengthening toughened poly(lactic acid) blend via natural reinforcement with enhanced biodegradability: A review[J]. International Journal of Biological Macromolecules, 2023, DOI: 10.1016/j.ijbiomac.2023.126214.
11
YAN X X, HUANG S J, HUAN J, et al. Chemical recycling of poly(butylene terephthalate) into value-added biodegradable poly(butylene adipate-co-terephthalate)[J]. Polymer Chemistry, 2024, DOI: 10.1039/d4py00068d.
12
MOHAMMADI M, HEUZEY M C, CARREAU P J, et al. Morphological and rheological properties of PLA, PBAT, and PLA/PBAT blend nanocomposites containing CNCs[J]. Nanomaterials, 2021, DOI: 10.3390/nano11040857.
13
WANG X, PENG S X, CHEN H, et al. Mechanical properties, rheological behaviors, and phase morphologies of high-toughness PLA/PBAT blends by in-situ reactive compatibilization[J]. Composites Part B-Engineering, 2019, DOI: 10.1016/j.compositesb.2019.107028.
14
CHEN R Y, JIN B H, HAN L, et al. Preparation and performance of super toughened and high heat-resistant biodegradable PLA/PBAT blends[J]. Materials Letters, 2024, DOI: 101016/j.matlet.2024.136171.
15
ZHAO X P, YU J J, WANG X, et al. Strong synergistic toughening and compatibilization enhancement of carbon nanotubes and multi-functional epoxy compatibilizer in high toughened polylactic acid (PLA)/poly(butylene adipate-co-terephthalate)(PBAT) blends[J]. International Journal of Biological Macromolecules, 2023, DOI: 10.1016/j.ijbiomac.2023.126204.
16
KO E, KIM T, AHN J, et al. Synergic effect of HNT/OMMT bi-filler system for the mechanical enhancement of PLA/PBAT film[J]. Fibers and Polymers, 2021, 22(8): 2163-2169.
17
YANG J, LI W, MU B N, et al. 3D printing of toughened enantiomeric PLA/PBAT/PMMA quaternary system with complete stereo-complexation: Compatibilizer architecture effects[J]. Polymer, 2022, DOI: 10.1016/j.polymer.2022.124590.
18
PUEKPOONPOAL N, PHATTARATEERA S, KERDDONFAG N, et al. Morphology development of PLAs with different stereo-regularities in ternary blend PBSA/PBS/PLA films[J]. Polymer-Plastics Technology and Materials, 2021, 60(15): 1672-1685.
19
YU W W, SUN L W, LI M Y, et al. FDM 3D printing and properties of PBS/PLA blends[J]. Polymers, 2023, DOI: 10.3390/polym15214305.
20
杨皓然,张荣希,段同生,等.高韧耐热PLA/PBS共混材料的制备及性能[J].工程塑料应用,2022,50(6):25-30.
21
MONIKA, MULCHANDANI N, KATIYAR V. Generalized kinetics for thermal degradation and melt rheology for poly(lactic acid)/poly(butylene succinate)/functionalized chitosan based reactive nanobiocomposite[J]. International Journal of Biological Macromolecules, 2019, 141: 831-842.
22
ZHANG X Z, ZHANG Y. Reinforcement effect of poly(butylene succinate) (PBS)-grafted cellulose nanocrystal on toughened PBS/polylactic acid blends[J]. Carbohydrate Polymers, 2016, 140: 374-382.
23
GIGANTE V, ALIOTTA L, PONT BDAL, et al. Tailoring morphology and mechanical properties of PLA/PBSA blends optimizing the twin-screw extrusion processing parameters aided by a 1D simulation software[J]. Polymer Testing, 2023, DOI: 10.1016/j.polymertesting.2023.108294.
24
刘斐.反应性增容PLA/PBSA、PLA/PBAT共混材料的制备、结构与性能研究[D].海口:海南大学,2020.
25
MESSIN T, MARAIS S, FOLLAIN N, et al. Biodegradable PLA/PBS multinanolayer membrane with enhanced barrier performances[J]. Journal of Membrane Science, 2020, DOI: 10.1016/j.memsci.2019.117777.
26
SU S, KOPITZKY R, TOLGA S, et al. Polylactide (PLA) and its blends with poly(butylene succinate) (PBS): A brief review[J]. Polymers, 2019, DOI: 10.3390/polym11071193.
27
ZHOU H M, XIA Y, MU G Q, et al. The preparation and characterization of biodegradable PCL/PLA shape memory blends[J]. Journal of Macromolecular Science Part A—Pure and Applied Chemistry, 2021, 58(10): 669-676.
28
BAI H W, XIU H, GAO J, et al. Tailoring impact toughness of poly(L-lactide)/poly(ε-caprolactone) (PLLA/PCL) blends by controlling crystallizatior of PLLA matrix[J]. ACS Applied Materials & Interfaces, 2012, 4(2): 897-905.
29
ZHOU Z N, WANG E F, LIANG Y P, et al. Bio-based PA-grafted bamboo charcoal for improving the flame retardancy of PLA/PCL film without damaging mechanical properties and degradability[J]. Industrial Crops and Products, 2024, DOI: 10.1016/j.indcrop.2024.118182.
30
SEMBA T, KITAGAWA K, ISHIAKU U S, et al. The effect of crosslinking on the mechanical properties of polylactic acid/polycaprolactone blends[J]. Journal of Applied Polymer Science, 2006, 101(3): 1816-1825.
31
SUNDAR N, KEERTHANA P, KUMAR S A, et al. Dual purpose, bio-based polylactic acid (PLA)-polycaprolactone (PCL) blends for coated abrasive and packaging industrial coating applications[J]. Journal of Polymer Research, 2020, DOI: 10.1007/s10965-020-02320-0.
32
CHEN R Y, ZOU W, ZHANG H C, et al. Poly(lactic acid)/polypropylene and compatibilized poly(lactic acid)/polypropylene blends prepared by a vane extruder: Analysis of the mechanical properties, morphology and thermal behavior[J]. Journal of Polymer Engineering, 2015, 35(8): 753-764.
33
LIU R L, XU Z X, CHEN C X, et al. Effects of modified SWCNT on the mechanical and thermal properties of PLA/PHB bio-composites[J]. Aip Advances, 2020, DOI: 10.1063/5.0011522.
34
LUZI F, DOMINICI F, ARMENTANO I, et al. Combined effect of cellulose nanocrystals, carvacrol and oligomeric lactic acid in PLA_PHB polymeric films[J]. Carbohydrate Polymers, 2019, DOI: 10.1016/j.carbpol.2019.115131.
35
KERVRAN M, VAGNER C, COCHEZ M, et al. Thermal degradation of polylactic acid (PLA)/polyhydroxybutyrate (PHB) blends: A systematic review[J]. Polymer Degradation and Stability, 2022, DOI: 10.1016/j.polymdegradstab.2022.109995.
36
FIORE V. Natural fibres and their composites[J]. Polymers, 2020, DOI: 10.3390/polym12102380.
37
朱严瑾,田芳蕊,阮林光,等.天然胶乳薄膜与木棉纤维/聚酯纤维非织造布吸声复合材料的制备与性能研究[J].橡胶工业,2024,71(11):803-810.
38
JAMADI A H, RAZALI N, PETRŮ M, et al. Effect of chemically treated kenaf fibre on mechanical and thermal properties of PLA composites prepared through fused deposition modeling (FDM)[J]. Polymers, 2021, DOI: 10.3390/polym13193299.
39
MANRAL A, BAJPAI P K. Effect of non-acidic chemical treatment of Kenaf fiber on physico mechanical properties of PLA based composites[J]. Journal of Natural Fibers, 2022, 19(13): 5709-5727.
40
FANG X Y, LI Y C, ZHAO J Q, et al. Improved interfacial performance of bamboo fibers/polylactic acid composites enabled by a self-supplied bio-coupling agent strategy[J]. Journal of Cleaner Production, 2022, DOI: 10.1016/j.jclepro.2022.134719.
41
程伟琴,杨鹏飞,冯明,等.高直链淀粉/聚乳酸接枝共聚物的制备及性能研究[J].塑料科技,2023,51(10):77-80.
42
YAMAGUCHI A, ARAI S, ARAI N. Molecular insight into toughening induced by core-shell structure formation in starch-blended bioplastic composites[J]. Carbohydrate Polymers, 2023, DOI: 10.1016/j.carbpol.2023.120974.
43
GUO M L, JIN Y J, HAN X L, et al. Simultaneously strengthening and toughening biodegradable polylactic acid/thermoplastic starch blends by compatibilizing with epoxy-terminated hyperbranched polyester[J]. Journal of Polymers and the Environment, 2023, DOI: 10.1007/s10924-023-03113-4.
44
BHER A, UNALAN I U, AURAS R, et al. Toughening of poly(lactic acid) and thermoplastic cassava starch reactive blends using graphene nanoplatelets[J]. Polymers, 2018, DOI: 10.3390/polym10010095.
45
SADEGHI GHARI H, NAZOCKDAST H. Morphology development and mechanical properties of PLA/differently plasticized starch (TPS) binary blends in comparison with PLA/dynamically crosslinked "TPS+EVA" ternary blends[J]. Polymer, 2022, DOI: 10.1016/j.polymer.2022.124729.
46
王晓珂,冯冰涛,殷茂峰,等.增韧改性聚乳酸基生物降解材料研究进展[J].塑料科技,2023,51(12):88-93.
47
THAKUR S, CISNEROS-LOPEZ E O, PIN J M, et al. Green toughness modifier from downstream corn oil in improving poly(lactic acid) performance[J]. ACS Applied Polymer Materials, 2019, 1(12): 3396-3406.
48
PEREZ-NAKAI A, LERMA-CANTO A, DOMINGEZ-CANDELA I, et al. Comparative study of the properties of plasticized polylactic acid with maleinized hemp seed oil and a novel maleinized brazil nut seed oil[J]. Polymers, 2021, DOI: 10.3390/polym13142376.
49
RAJESH K A, KARTHA S A, ISSAC M N, et al. Biosourced epoxidized neem oil toughened poly(lactic acid) for agricultural applications: Mechanical, thermal and compostability properties[J]. Iranian Polymer Journal, 2023, 32(3): 275-285.
50
LIU W D, QIU J H, FEI M E, et al. Balancing performance of epoxidized soybean oil (ESO)/poly(lactic acid) composites: Synergistic effects of carbon nanotubes and tannic acid-induced crosslinking of ESO[J]. Express Polymer Letters, 2019, 13(2): 109-122.

Comments

PDF(644 KB)

Accesses

Citation

Detail

Sections
Recommended

/