Preparation and Properties Study of Polyurethane Filling Materials

DU Zongao, ZHANG Yulin, SUN Jianing, QIAO Wenqiang, WANG Zhiyuan

PDF(1799 KB)
PDF(1799 KB)
Plastics Science and Technology ›› 2025, Vol. 53 ›› Issue (01) : 109-114. DOI: 10.15925/j.cnki.issn1005-3360.2025.01.020
Additives

Preparation and Properties Study of Polyurethane Filling Materials

Author information +
History +

Abstract

Polyurethane elastomers were prepared by the prepolymerization method using toluene diisocyanate (TDI), polytetrahydrofuran diol (PTMEG), self-made mixed chain extender and filling oil as raw materials. The effects of the mole ratio of trifunctional chain extender to difunctional chain extender in the self-made mixed chain extender and the amount of filling oil on the properties of polyurethane elastomers were investigated. The results show that the composition of the mixed chain extender has the most significant effect on the mechanical properties of the polyurethane elastomer. With the increase of the amount of three-functional chain extender, the glass transition temperature, energy storage modulus and hardness of the polyurethane elastomers gradually increase, the tensile strength first increases and then decreases, and the internal friction and elongation at break gradually decrease. Among them, the comprehensive mechanical properties of the sample PU-3 are the best. The glass transition temperature, energy storage modulus, tensile strength and hardness of polyurethane elastomers decrease gradually with the increase of the amount of filling oil, and the internal friction and elongation at break tend to increase.

Key words

Polyurethane elastomer / Mixed chain extender / Filling oil

Cite this article

Download Citations
DU Zongao , ZHANG Yulin , SUN Jianing , et al . Preparation and Properties Study of Polyurethane Filling Materials. Plastics Science and Technology. 2025, 53(01): 109-114 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.01.020

References

1
REGHUNADHAN A, DATTA J, KALARIKKAL N, et al. Development of nanoscale morphology and role of viscoelastic phase separation on the properties of epoxy/recycled polyurethane blends[J]. Polymer, 2017, 117: 96-106.
2
QU Q Q, WANG H, HE J, et al. Analysis of the microphase structure and performance of self-healing polyurethanes containing dynamic disulfide bonds[J]. Soft Matter, 2020, 16(39): 9128-9139.
3
MIRHOSSEINI M M, HADDADI-ASL V, JOUIBARI I S. A simple and versatile method to tailor physicochemical properties of thermoplastic polyurethane elastomers by using novel mixed soft segments[J]. Materials Research Express, 2019, DOI: 10.1088/2053-1591/ab0cba.
4
SHEN Z Y, ZHENG L C, LI C C, et al. A comparison of non-isocyanate and HDI-based poly(ether urethane): Structure and properties[J]. Polymer, 2019, 175: 186-194.
5
DONG F, MAGANTY S, MESCHTER S J, et al. Electron beam irradiation effect on the mechanical properties of nanosilica-filled polyurethane films[J]. Polymer Degradation and Stability, 2017, 141: 45-53.
6
YOU G X, WANG J Q, WANG C Y, et al. Effect of side methyl from mixed diamine chain extenders on microphase separation and morphology of polyurethane fiber[J]. Materials Research Express, 2019, DOI: 10.1088/2053-1591/ab2342.
7
KIM S M, PARK S A, HWANG S Y, et al. Environmentally-friendly synthesis of carbonate-type macrodiols and preparation of transparent self-healable thermoplastic polyurethanes[J]. Polymers (Basel), 2017, DOI: 10.3390/polym9120663.
8
SAHEBI JOUIBARI I, HADDADI ASL V, MIRHOSSEINI M M. Formulation of micro-phase separation kinetics of polyurethane nanocomposites[J]. Polymers for Advanced Technologies, 2018, 29(12): 2909-2916.
9
DALL A L, ORNAGHI H L, MONTICELI F, et al. Polyurethanes synthetized with polyols of distinct molar masses: Use of the artificial neural network for prediction of degree of polymerization[J]. Polymer Engineering & Science, 2021, 61(6): 1810-1818.
10
BEHERA P K, RAUT S K, MONDAL P, et al. Self-healable polyurethane elastomer based on dual dynamic covalent chemistry using diels-alder "click" and disulfide metathesis reactions[J]. ACS Applied Polymer Materials, 2021, 3(2): 847-856.
11
QUINSAAT J E Q, FEGHALI E, van de PAS D J, et al. Preparation of mechanically robust bio-based polyurethane foams using depolymerized native lignin[J]. ACS Applied Polymer Materials, 2021, 3(11): 5845-5856.
12
XIE F, ZHANG T, BRYANT P, et al. Degradation and stabilization of polyurethane elastomers[J]. Progress in Polymer Science, 2019, 90: 211-268.
13
ZHANG C, WANG C G, YANG J L, et al. Electric poling and relaxation of thermoset polyurethane second-order nonlinear optical materials: Role of cross-linking and monomer rigidity[J]. Macromolecules, 2001, 34(2): 235-243.
14
YAO Y, XU Z Y, LIU B, et al. Multiple H‐bonding chain extender‐based ultrastiff thermoplastic polyurethanes with autonomous self‐healability, solvent-free adhesiveness, and AIE fluorescence[J]. Advanced Functional Materials, 2021, DOI: 10.1002/adfm.202006944.
15
张建航,史中行,李侃旭,等.硫化体系对混炼型聚氨酯弹性体性能的影响[J].橡胶工业,2023,70(6):416-421.
16
SANTAMARIA-ECHART A, FERNANDES I, BARREIRO F, et al. Advances in waterborne polyurethane and polyurethane-urea dispersions and their eco-friendly derivatives: A review[J]. Polymers (Basel), 2021, DOI: 10.3390/polym13030409.
17
KARASU F, WEDER C. Tuning the properties of shape‐memory polyurethanes via the nature of the polyester switching segment[J]. Macromolecular Materials and Engineering, 2021, DOI: 10.1002/mame.202000770.
18
BAEK S H, KIM J H. Shape memory characteristics of thermadapt polyurethane incorporated with two structurally distinctive aliphatic isocyanates[J]. Polymer Testing, 2021, DOI: 10.1016/j.polymertesting.2021.107366.
19
LEE D, KIM H, LEE D. Introduction of reversible urethane bonds based on vanillyl alcohol for efficient self-healing of polyurethane elastomers[J]. Molecules, 2019, DOI: 10.3390/molecules24122201.
20
GUI H, GUAN G W, ZHANG T, et al. Microphase-separated, hierarchical macroporous polyurethane from a nonaqueous emulsion-templated reactive block copolymer[J]. Chemical Engineering Journal, 2019, 365: 369-377.
21
MOKEEV M V, OSTANIN S A, SAPRYKINA N N, et al. Microphase structure of polyurethane-polyurea copolymers as revealed by solid-state NMR: Effect of molecular architecture[J]. Polymer, 2018, 150: 72-83.
22
WANG S, COLBY R H. Linear viscoelasticity and cation conduction in polyurethane sulfonate ionomers with ions in the soft segment-multiphase systems[J]. Macromolecules, 2018, 51(8): 2767-2775.
23
MADBOULY S A, OTAIGBE J U. Recent advances in synthesis, characterization and rheological properties of polyurethanes and POSS/polyurethane nanocomposites dispersions and films[J]. Progress in Polymer Science, 2009, 34(12): 1283-1332.
24
CHATTOPADHYAY D K, RAJU K V S N. Structural engineering of polyurethane coatings for high performance applications[J]. Progress in Polymer Science, 2007, 32(3): 352-418.
25
ZIA K M, ANJUM S, ZUBER M, et al. Synthesis and molecular characterization of chitosan based polyurethane elastomers using aromatic diisocyanate[J]. International Journal of Biological Macromolecules, 2014, 66: 26-32.
26
王玉龙,孟美俊,王政.扩链剂结构对PTMG/MDI型聚氨酯结构和性能的影响[J].塑料,2023,52(4):60-65.
27
李玲玲,张赛,吕敬坡,等.HQEE和BDO扩链XDI型聚氨酯弹性体的制备及表征[J].聚氨酯工业,2021,36(3):34-37.
28
孙浩,李廷廷,于向伟,等.聚氨酯弹性体力学及耐水性能研究[J].热固性树脂,2020,35(6):15-19.
29
GRADINARU L M, BARBALATA-MANDRU M, DROBOTA M, et al. Preparation and evaluation of nanofibrous hydroxypropyl cellulose and beta-cyclodextrin polyurethane composite mats[J]. Nanomaterials (Basel), 2020, DOI: 10.3390/nano10040754.
30
PAN G F, WANG Z, KONG D Q, et al. Transparent, flame‐retarded, self‐healable, mechanically strong polyurethane elastomers: Enabled by the synthesis of phosphorus/nitrogen‐containing oxime chain-extender[J]. Journal of Applied Polymer Science, 2022, DOI:10.1002/app.51598.
31
李玲玲.基于间苯二亚甲基二异氰酸酯聚氨酯弹性体的合成与表征[D].大连:大连理工大学,2021.

Comments

PDF(1799 KB)

Accesses

Citation

Detail

Sections
Recommended

/