Study on Interfacial Stabilization Modification of PP-nanosilica Composite

ZHANG Danyang, WANG Yuanxia, SONG Lixin, YANG Rui

PDF(1519 KB)
PDF(1519 KB)
Plastics Science and Technology ›› 2025, Vol. 53 ›› Issue (01) : 46-50. DOI: 10.15925/j.cnki.issn1005-3360.2025.01.008
Theory and Research

Study on Interfacial Stabilization Modification of PP-nanosilica Composite

Author information +
History +

Abstract

Nanoparticles significantly enhance the mechanical properties of polymers, but their presence tends to accelerate polymer aging due to the catalytic effect of chemicals on the surface of nanoparticles. Therefore, the stability of polymer composites can be improved by grafting anti-aging chemical groups on the surface of nanoparticles. In this paper, polypropylene (PP)-nanosilica (A380) composites were selected as a typical system, and site-resistant phenol functional groups were grafted on the surface of nanosilica. Compared with the composites without surface modification (PP-A380), the graft-modified nanosilica were uniformly dispersed in PP, and the surface-modified PP-A380 composites had better thermal stability. Due to chemical grafting, the site-resistant phenol showed better migration resistance. Surface grafting also contributed to the improvement of mechanical properties.

Key words

Polyprolylene composites / Nanosilica / Aging / Surface modification / Oxidative induction time

Cite this article

Download Citations
ZHANG Danyang , WANG Yuanxia , SONG Lixin , et al. Study on Interfacial Stabilization Modification of PP-nanosilica Composite. Plastics Science and Technology. 2025, 53(01): 46-50 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.01.008

References

1
张博宇,王彦明,张志晓,等.高分子材料制备及应用研究进展[J].山东化工,2022,51(15):58-59, 62.
2
马玉聪,王天骄,郑顺奇,等.纳米硅补强氟橡胶的研究[J].橡胶工业,2024,71(1):11-18.
3
WU W, XU Z D. Study on the reinforced and toughened PP blends with the rigid nano-particles and the elastic rubber-particles[J]. Acta Polymerica Sinica, 2000, 75(1): 99-104.
4
穆娟,丁海琴,吕惠芳.纳米二氧化硅增强聚氯乙烯韧性和塑化性能的研究[J].塑料科技,2022,50(1):62-65.
5
冯建湘,吴任钊,何雨霖,等.新型抗氧剂研究进展[J].包装学报,2021,13(3):71-82.
6
潘江庆.抗氧剂在高分子领域的研究和应用[J].高分子通报,2002(1):57-66.
7
张会平.三叉结构受阻酚类抗氧剂的合成与性能研究[D].大庆:大庆石油学院,2008.
8
ALLEN N S, EDGE M, CORRALES T, et al. Ageing and stabilisation of filled polymers: An overview[J]. Polymer Degradation & Stability, 1998, 61(2): 183-199.
9
LI J F, YANG R, YU J, et al. Natural photo-aging degradation of polypropylene nanocomposites[J]. Polymer Degradation and Stability, 2008, 93(1): 84-89.
10
XU Z P, YE Y, TANG G S, et al. Effect of alkylated surface modified silica nanoparticles on degradation products of PP during photooxidation aging: A Py-GC-MS analysis[J]. Journal of Analytical & Applied Pyrolysis, 2023, DOI:10.1016/j.jaap.2023.105862.
11
ZHAO J H, YANG R, IERVOLINO R, et al. Investigation of crosslinking in the thermooxidative aging of nitrile-butadiene rubber[J]. Journal of Applied Polymer Science, 2015, 132(3): 414-427.
12
ZHAO J, LIU X, YANG R, et al. Disappearance of the filler an interesting interfacial evolution during the photooxidative aging of polypropylene composites[J]. Journal of Applied Polymer Science, 2015, DOI: 10.1002/app.42546.
13
ZHAO J H, YANG R, YU J, et al. Interfacial effect on photo-oxidation of PP/CaCO3 composites[J]. Acta Polymerica Sinica, 2014, DOI: 10.11777/j.issn1000-3304.2014.14113.
14
WANG Y, SU J, LI T, et al. A novel UV-shielding and transparent polymer film: When bioinspired dopamine-melanin hollow nanoparticles join polymers[J]. ACS Applied Materials & Interfaces, 2017, 9(41): 36281-36289.
15
NIU X, LIU Y T, FANG G G, et al. Highly transparent, strong and flexible films with modified cellulose nanofiber bearing UV shielding property[J]. Biomacromolecules, 2018, 19(12): 4565-4575.
16
LIU H, YANG H, ZHU K, et al. Facile fabrication of a polyvinyl alcohol-based hydrophobic fluorescent film via the Hantzsch reaction for broadband UV protection[J]. Materials Horizons, 2022, 9(2): 815-824.
17
PARIT M, DU H S, ZHANG X Y, et al. Flexible, transparent, UV-protecting, water-resistant nanocomposite films based on polyvinyl alcohol and kraft lignin-grafted cellulose nanofibers[J]. ACS Applied Polymer Materials, 2022, 4(5): 3587-3597.
18
李长太.烯丙基酚类的反应性防老剂的研制(第一报)[J].青岛科技大学学报:自然科学版,1980(1):13-21.
19
李长太,陶英丕,朱凤珍,等.烯丙基酚类的反应性防老剂的研制(第三报)——反应型抗氧剂TAP、P—ABP、P—ABC的抗氧化性能[J].山东化工学院学报,1981(1):21-28.
20
KONSTANTINOVA T, KONSTANTINOV H, AVRAMOV L. Synthesis and properties of copolymers of triazinylaminobenzotriazole stabilizers with methyl methacrylate[J]. Polymer Degradation and Stability, 1999, 64(2): 235-237.
21
BOJINOV V B, GRABCHEV I. Synthesis of new combined 2,2,6,6-tetramethylpiperidine-2-hydroxyphenylbenzotriazole 1,3,5-triazine derivatives as stabilizers for polymers[J]. Polymer Degradation and Stability, 2001, 74(3): 543-550.
22
CHEN J, YANG M S, ZHANG S M. Immobilization of antioxidant on nanosilica and the aging resistance behavior in polypropylene[J]. Composites Part A: Applied Science & Manufacturing, 2011, 42(5): 471-477.
23
宋倩倩,黄格省,周笑洋,等.茂金属聚乙烯市场现状与技术进展[J].石化技术及应用,2021,39(3):153-158.
24
陈庆华,曹长林,钱庆荣,等.无机纳米复合型抗老化剂的合成及其改性聚丙烯研究[J].中阿科技论坛:中英文,2022,(4):117-121.
25
LI G, WANG F, LIU P, et al. Antioxidant functionalized silica-coated TiO2 nanorods to enhance the thermal and photo stability of polypropylene[J]. Applied Surface Science, 2019, 476: 682-690.
26
高强,李爱英,卞吉东,等.PP/Nano-SiO2复合材料的制备及性能研究[J].塑料科技,2014,42(8):62-65.
27
KAMINSKY S W. New polyolefin-nanocomposites by in situ polymerization with metallocene catalysts[J]. Macromolecular Symposia, 2008, 261: 10-17.
28
LIN O H, AKIL H M, ISHAK Z A M. Characterization and properties of activated nanosilica/polypropylene composites with coupling agents[J]. Polymer Composites, 2009, 30(11):1693-1700.
29
KLUENKER E, FAYMONVILLE J, PETER K, et al. Reactive extrusion processing of polypropylene/SiO2 nanocomposites by in situ synthesis of the nanofillers: Experiments and properties[J]. Polymer, 2014, 55(21): 5370-5380.
30
CRUCHO C I C, BALEIZAO C, FARINHA J P S. Functional group coverage and conversion quantification in nanostructured silica by 1HNMR[J]. Analytical Chemistry, 2017, DOI: 10.1021/acs.analchem.6b03117.
31
LIU X G, DONG X, WANG D J, et al. Synergistic effect of nanofiller geometry and shear flow on the morphology evolution in SSBR/LPI/filler ternary system[J]. Polymer, 2015, 72: 193-201.
32
YANG R, ZHAO J H, LIU Y. Oxidative degradation products analysis of polymer materials by pyrolysis gas chromatography-mass spectrometry[J]. Polymer Degradation and Stability, 2013, 98(12): 2466-2472.
33
GAO X W, MENG X F, WANG H T, et al. Antioxidant behaviour of a nanosilica-immobilized antioxidant in polypropylene[J]. Polymer Degradation and Stability, 2008, 93(8): 1467-1471.
34
WANG X F, WANG B B, SONG L, et al. Antioxidant behavior of a novel sulfur-bearing hindered phenolic antioxidant with a high molecular weight in polypropylene[J]. Polymer Degradation & Stability, 2013, 98(9): 1945-1951.
35
SHI X M, WANG J D, JIANG B B, et al. Hindered phenol grafted carbon nanotubes for enhanced thermal oxidative stability of polyethylene[J]. Polymer, 2013, 54(3): 1167-1176.
36
LU M, LIU P, ZHANG S M, et al. Anti-aging behavior of amino-containing co-condensed nanosilica in polyethylene[J]. Polymer Degradation and Stability, 2018, 154: 137-148.
37
程成.聚乙烯基微-纳米复合材料介电性能研究[D].哈尔滨:哈尔滨理工大学,2017.

Comments

PDF(1519 KB)

Accesses

Citation

Detail

Sections
Recommended

/