Study on Microstructure and Properties of Liquid Crystal Polyarylate Modified by Blending of Polytetrafluoroethylene

GAO Zhan, SHAO Weiguang, LI Wanli, CAI Lihai, WANG Xin, YE Haimu

PDF(1872 KB)
PDF(1872 KB)
Plastics Science and Technology ›› 2025, Vol. 53 ›› Issue (01) : 35-40. DOI: 10.15925/j.cnki.issn1005-3360.2025.01.006
Theory and Research

Study on Microstructure and Properties of Liquid Crystal Polyarylate Modified by Blending of Polytetrafluoroethylene

Author information +
History +

Abstract

Liquid crystal polyarylate (LCP) possesses very low melt viscosity due to the rigid rod-shaped structure of its main chain, which is not beneficial for film processing and molding. The study aims to enhance the melt viscosity of LCP through blending modification with polytetrafluoroethylene (PTFE), while ensuring excellent mechanical properties, dimensional stability, and low dielectric performance at high frequencies. Rheological properties results of the blends indicate that the melt viscosity gradually increases with the addition of PTFE. Dielectric properties results of the prepared thin films indicate that the incorporation of PTFE significantly reduces the dielectric constant and dielectric loss of the blend films. The LCP/5%PTFE blend film possesses a dielectric constant of 3.15 and a dielectric loss of 0.013 5 under the condition of 1 MHz, representing a decrease of 7.1% and 24.9% compared to pure LCP. SEM images reveal that the incorporation of high-viscosity PTFE restricts the formation of the original long-range fibrous structure of LCP. Furthermore, thermal performance test results indicate that both the melting point and degradation temperature of the blends increase with an increasing proportion of PTFE in the blend.

Key words

Liquid crystal polyarylate / Polytetrafluoroethylene / Melt viscosity / Dielectric properties

Cite this article

Download Citations
GAO Zhan , SHAO Weiguang , LI Wanli , et al . Study on Microstructure and Properties of Liquid Crystal Polyarylate Modified by Blending of Polytetrafluoroethylene. Plastics Science and Technology. 2025, 53(01): 35-40 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.01.006

References

1
KIM B, LEE C, KIM J, et al. Synergistic effect of fluorination and molecular orientational order on the dielectric properties of low-κ liquid crystal polymer films[J]. Chemistry of Materials, 2023, 35(23): 10129-10138.
2
廖凌元,彭忠泉,章明秋,等.高频印制电路板用低介电高分子材料的研究进展[J].功能高分子学报,2021,34(4):320-335.
3
LI Y H, SUN G H, ZHOU Y, et al. Progress in low dielectric polyimide film—A review[J]. Progress in Organic Coatings, 2022, DOI: 10.1016/j.porgcoat.2022.107103.
4
VOLKSEN W, MILLER R D, DUBOIS G. Low dielectric constant materials[J]. Chemical reviews, 2010, 110(1): 56-110.
5
KIM B Y, PARK S D, YOO M J, et al. Graft architectured poly(phenylene oxide)-based flexible films with superior dielectric properties for high-frequency communication above 100 GHz[J]. ACS Applied Polymer Materials, 2024, 6(8): 4708-4717.
6
ISLAM M Z, FU Y, DEB H, et al. Polymer-based low dielectric constant and loss materials for high-speed communication network: Dielectric constants and challenges[J]. European Polymer Journal, 2023, DOI: 10.1016/j.eurpolymj.2023.112543.
7
LIU P J, LI Y L, XU H X, et al. Aging mechanism and lifetime prediction of glass fiber reinforced liquid crystal polymer composite under thermal and oxidative conditions[J]. Macromolecular Materials and Engineering, 2024, DOI: 10.1002/mame.202300301.
8
ZHANG S Y, FU T, GONG Y, et al. Design and synthesis of liquid crystal copolyesters with high-frequency low dielectric loss and inherent flame retardancy[J]. Chinese Chemical Letters, 2023, DOI: 10.1016/j.cclet.2022.06.038.
9
李军芳,毛学锋,李恒,等.2,6-NDA单体纯化及其含萘聚酯产品应用进展[J].塑料科技,2023,51(10):112-116.
10
LI Z, GONZALEZ G P A, BAER E, et al. Modification of rheological properties of a thermotropic liquid crystalline polymer by melt-state reactive processing[J]. Polymer, 2012, 53(15): 3245-3252.
11
YANG Z T, LIU Y, ZHANG Z, et al. Preparation of isotropic branched LCP films via a dynamic rotating die: Relationship among orientation, mechanical properties, and microstructure[J]. ACS Applied Polymer Materials, 2024, 6(15): 9249-9259.
12
ARAKI K, KITANO T, HAUSNEROVA B. Rheological properties of carbon fiber and carbon black filled liquid crystalline polymer melts[J]. Applied Rheology, 2001, 11(4): 188-196.
13
KING J A, TAMBLING T M, MORRISON F A, et al. Effects of carbon fillers on the rheology of highly filled liquid-crystal polymer based resins[J]. Journal of Applied Polymer Science, 2008, 108(3): 1646-1656.
14
TANG Y S, XU S, XIE Y C, et al. Interfacial RAFT polymerization induced ultra low dielectric loss ceramic/cyanate ester composites[J]. Composites Science and Technology, 2016, 124: 10-16.
15
LIU F H, JIN Y H, LI J Y, et al. Improved coefficient thermal expansion and mechanical properties of PTFE composites for high-frequency communication[J]. Composites Science and Technology, 2023, DOI: 10.1016/j.compscitech.2023.110142.
16
ALIBAKHSHIKENARI M, VIRDEE B S, SEE C H, et al. Super-wide impedance bandwidth planar antenna for microwave and millimeter-wave applications[J]. Sensors, 2019, DOI: 10.3390/s19102306.
17
HENRI V, DANTRAS E, LACABANNE C, et al. Thermal ageing of PTFE in the melted state: Influence of interdiffusion on the physicochemical structure[J]. Polymer Degradation and Stability, 2020, DOI: 10.1016/j.polymdegradstab.2019.109053.
18
HUANG A, KHARBAS H, ELLINGHAM T, et al. Mechanical properties, crystallization characteristics, and foaming behavior of polytetrafluoroethylene-reinforced poly(lactic acid) composites[J]. Polymer Engineering & Science, 2017, 57(5): 570-580.
19
TJONG S, LI R, MENG Y. Rheology and impact characteristics of compatibilized polypropylene‐liquid crystalline polymer composites[J]. Journal of Applied Polymer Science, 1998, 67(3): 521-530.
20
HONG S M, KIM B C, HWANG S S, et al. Rheological and physical properties of polyarylate/LCP blend systems[J]. Polymer Engineering & Science, 1993, 33(10): 630-639.
21
LUO S B, SHEN Y B, YU S H, et al. Construction of a 3D-BaTiO3 network leading to significantly enhanced dielectric permittivity and energy storage density of polymer composites[J]. Energy & Environmental Science, 2017, 10(1): 137-144.
22
SUN H D, LV Y X, ZHANG C Y, et al. Materials with low dielectric constant and loss and good thermal properties prepared by introducing perfluorononenyl pendant groups onto poly(ether ether ketone)[J]. RSC Advances, 2018, 8(14): 7753-7760.
23
ZHANG G Z, YIN J F, YAN M B, et al. Improved through-plane thermal conductivity and mechanical properties of low-dielectric FEP/HBN composites by adding PTFE nanoparticles[J]. ACS Applied Electronic Materials, 2021, 3(10): 4568-4578.
24
DAI J H, LIANG F, ZHANG R, et al. Study on modification of ZnNb2O6/PTFE microwave composites with LCP fiber[J]. Ceramics International, 2022, 48(2): 2362-2368.
25
WANG H, YANG H, TONG J X, et al. Medium dielectric constant and low-loss PTFE composites filled with MgO-LiF co-doped Li2TiO3 particles[J]. Journal of Applied Polymer Science, 2019, DOI: 10.1002/app.47980.
26
JIN W, LI A Y, LI Y Y, et al. Enhancing high-frequency dielectric and mechanical properties of SiO2/PTFE composites from the interface fluorination[J]. Ceramics International, 2022, 48(19): 28512-28518.

Comments

PDF(1872 KB)

Accesses

Citation

Detail

Sections
Recommended

/