Synthesis, Characterization and Degradable Property Study of PNIPAM Microgels Crosslinked by N,N'-Bisacrylylcystamine

XU Yuan-hang, MO Ting, LI Ming-hao, LI Ke-xin, ZHANG Shuai, LI Jia-xi, SHI Shan

PDF(1525 KB)
PDF(1525 KB)
Plastics Science and Technology ›› 2024, Vol. 52 ›› Issue (12) : 8-12. DOI: 10.15925/j.cnki.issn1005-3360.2024.12.002
Theory and Research

Synthesis, Characterization and Degradable Property Study of PNIPAM Microgels Crosslinked by N,N'-Bisacrylylcystamine

Author information +
History +

Abstract

Using N-isopropylacrylamide (NIPAM) as the monomer, ammonium persulfate (APS) as the oxidizing agent, tetramethylethylenediamine (TEMED) as the reducing agent, N,N'-bis(acryloyl) cystamine (BAC) containing reducible disulfide bonds under reductive conditions as the crosslinking agent, and dimethylformamide (DMF) as the solvent for dissolving BAC, the study successfully prepared BAC-crosslinked poly(N-isopropylacrylamide) (PNIPAM) microgels through a soap-free emulsion polymerization method, utilizing the redox initiation system of APS and TEMED. The FTIR test showed that the microgels contained disulfide bonds. The product microgels were observed to be regular spheres with submicron dimensions by TEM. The microgels were observed to be significantly temperature-sensitive by DLS, with the volumetric phase-transition temperatures (VPTT) around 29.1 ℃. The BAC-crosslinked PNIPAM microgels in aqueous solution of the reductant dithiothreitol (DTT) showed an obvious degradation property, and the larger the concentration of DTT, the faster and greater the degradation of the microgel.

Key words

Soap-free emulsion polymerization / Poly(N-isopropyl acrylamide) / Temperature sensitivity / Disulfide bonds / Degradable microgel

Cite this article

Download Citations
XU Yuan-hang , MO Ting , LI Ming-hao , et al . Synthesis, Characterization and Degradable Property Study of PNIPAM Microgels Crosslinked by N,N'-Bisacrylylcystamine. Plastics Science and Technology. 2024, 52(12): 8-12 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.12.002

References

1
BOUILLOT P, VINCENT B. A comparison of the swelling behaviour of copolymer and interpenetrating network microgel particles[J]. Colloid Polymer Science, 2000, 278(1): 74-79.
2
SCARPA J S, MUELLER D D, KLOTZ I M. Slow hydrogen-deuterium exchange in a non-alpha-helical polyamide[J]. Journal of the American Chemical Society, 1967, 89(24): 6024-6030.
3
HUERTA-ANGELES G, HISHCHAK K, STRACHOTA A, et al. Super-porous nanocomposite PNIPAm hydrogels reinforced with titania nanoparticles, displaying a very fast temperature response as well as pH-sensitivity[J]. European Polymer Journal, 2014, 59(3): 41-52.
4
谢诗婷,刘壮,谢锐,等.聚(N-异丙基丙烯酰胺-共聚-烯丙基硫脲)智能微凝胶的制备及其Hg2+响应性能的研究[J].化工学报,2023,74(6):2689-2698.
5
陆晨,查刘生.智能纳米水凝胶的刺激响应性研究进展[J].功能高分子学报,2012,25(2):211-220.
6
PELTON R H, CHIBANTE P. Preparation of aqueous latices with N-isopropylacrylamide[J]. Colloids and Surfaces, 1986, 20(3): 247-256.
7
BOLHUIS P G, KOFKE D A. Monte Carlo study of freezing of polydisperse hard spheres[J]. Physical Reviewe, 1996, 54 (1): 634-643.
8
AUER S, FRENKEL D. Suppression of crystal nucleation in polydisperse colloids due to increase of the surface free energy[J]. Nature, 2001, 413: 711-713.
9
KISHI R, KIHARA H, MIURA T. Structural observation of heterogeneous poly(N-isopropylacrylamide-co-aryliacid) hydrogels in highly hydrated states [J]. Colloid and Polymer Science, 2004, 283(2): 133-138.
10
THOME J B, VINE G J, SNOWDEN M J. Microgel applications and commercial considerations[J]. Colloid and Polymer Science, 2011, 289(5/6): 625-646.
11
ZHA L S, BANIK B, ALEXIS F. Stimulus responsive nanogels for drug delivery[J]. Soft Matter, 2011, 7(13): 5908-5916.
12
MILANI AH, FREEMONT A J, HOYLAND J A, et al. Injectable doubly cross-linked microgels for improving the mechanical properties of degenerated intervertebral discs[J]. Biomacromolecules, 2012, 13: 2793-2801.
13
SUZUKI K, YUMURA T, TANAKA Y, et al. Thermo-responsive release from interpenetrating porous silica-poly(N-isopropylacrylamide) hybrid gels[J]. Journal of Control Release, 2001, 75(1/2): 183-189.
14
TORRES-LUGO M, PEPPAS N A. Molecular design and in vitro studies of novel pH-sensitive hydrogels for the oral delivery of calcitonin[J]. Macromolecules, 1999, 32(20): 6646-6651.
15
EICHENBAUM G M, KISER P F, DOBRYNIN A V, et al. Investigation of the swelling response and loading of ionic microgels with drugs and proteins: The dependence on cross-link density[J]. Macromolecules, 1999, 32(15): 4867-4878.
16
GAN D J, LYON L A. Synthesis and protein adsorption resistance of PEG-modified poly(N-isopropylacrylamide) core/shell microgels[J]. Macromolecules, 2002, 35(26): 9634-9639.
17
HISANO N, MORIKAWA N, IWATA H, et a1. Entrapment of islets into reversible disulfide hydrogels[J]. Journal of Biomedical Materials Research, 1998, 40(1): 115-123.
18
LI X, GAO Y, SERPE M J. Reductant-responsive poly(N-isopropylacrylamide) microgels and microgel-based optical materials[J]. Canadian Journal of Chemistry, 2015, 93(7): 685-689.
19
ZHANG X J, LU S Y, GAO C M, et al. Highly stable and degradable multifunctional microgel for self-regulated insulin delivery under physiological conditions[J]. Nanoscale, 2013, 5(14): 6498-6506.
20
BAE K H, MOK H, PARK T G. Synthesis, characteization, and intracellular delivery ofreducible heparin nanogels for apoptotic cell death[J]. Biomaterials, 2008, 29: 3376-3383.
21
娄翔.二硫键交联的壳聚糖一明胶水凝胶[D].天津:天津大学,2006.
22
ZHANG Y, JIANG M, ZHAO J, et al. A novel route to thermos-sensitive polymeric core-shell aggregates and hollow spheres in aqueous media[J]. Advanced Functioal Materials, 2005, 15(4): 695-699.

Comments

PDF(1525 KB)

Accesses

Citation

Detail

Sections
Recommended

/