Application of YOLOv5 Algorithm in Polymer Materials Field

LI Yu-jia

PDF(578 KB)
PDF(578 KB)
Plastics Science and Technology ›› 2024, Vol. 52 ›› Issue (11) : 157-160. DOI: 10.15925/j.cnki.issn1005-3360.2024.11.030
Review

Application of YOLOv5 Algorithm in Polymer Materials Field

Author information +
History +

Abstract

In modern industry, polymer materials are widely used in various fields due to their unique physical and chemical properties. Object detection technology, especially the YOLOv5 algorithm, has become an important tool in materials science due to its advantages in real-time and accuracy. YOLOv5, as the latest version of the You Only Look Once (YOLO) series, significantly improves the speed and accuracy of object detection through its advanced deep learning architecture. The article reviews the application of YOLOv5 in the field of polymer materials, including material defect detection, classification and identification, performance prediction, and material characterization and analysis. The above applications not only improve the quality and efficiency of material production, but also provide new perspectives for material research and development. With the continuous advancement of technology, YOLOv5 has broad application prospects in the field of polymer materials, and is expected to further promote the development of intelligent manufacturing and automation.

Key words

YOLOv5 algorithm / Polymer materials / Material defect detection / Classification and recognition / Performance prediction / Material characterization and analysis

Cite this article

Download Citations
LI Yu-jia. Application of YOLOv5 Algorithm in Polymer Materials Field. Plastics Science and Technology. 2024, 52(11): 157-160 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.11.030

References

1
康菡子,朱浩霖,周文欣,等.基于动态共价键类玻璃高分子材料的制备及应用研究进展[J].塑料科技,2024,52(6):155-160.
2
李华,朱雨田,赵桂艳.导电高分子基柔性应变传感材料研究进展[J].辽宁石油化工大学学报,2022,42(2):44-49.
3
刘耿焕,曾祥津,豆嘉真,等.基于深度学习的小目标检测技术研究进展[J].红外与激光工程,2024,53(9):196-228.
4
张立国,袁煜淋,金梅,等.基于改进YOLOv8n的无人机目标检测算法研究[J].计量学报,2024,45(10):1487-1493.
5
杨旭睿,冯宇平,李悦,等.基于注意力机制改进YOLO-V5的多尺度行人目标检测[J].青岛科技大学学报:自然科学版,2024,45(5):127-134.
6
方琪豪.基于改进YOLO算法的高压线路障碍物检测算法研究[J].自动化应用,2024,65(19):32-34.
7
姜月,肖萌,李海霞.基于YOLOv5s的神经网络麦穗识别算法研究[J].人工智能与机器人研究,2022,11(2):84-90.
8
白浩琦,李和平.基于改进YOLOv5的Video SAR动目标检测算法[J].科技创新与应用,2024,14(26):54-59.
9
邓诗弋.基于改进YOLOv5的道岔滑床板磨损缺陷检测方法研究[D].西安:西安理工大学,2024.
10
马鸽,李洪伟,严梓维,等.基于多注意力的改进YOLOv5s小目标检测算法[J].工程科学学报,2024,46(9):1647-1658.
11
郭明全,赵景服.YOLOv5-SATC:用于遥感图像目标检测的网络[J].信息与电脑:理论版,2024,36(15):18-20.
12
曲英伟,刘锐.基于YOLOv5-MobileNetV3算法的目标检测[J].计算机系统应用,2024,33(7):213-221.
13
王志林.基于改进YOLOv5的无人机图像中的车辆检测研究[D].淮南:安徽理工大学,2024.
14
乔石丽.基于改进YOLOv5的复杂场景下车辆目标检测算法研究[D].长春:长春工业大学,2024.
15
JIA X, TONG Y, QIAO H M, et al. Fast and accurate object detector for autonomous driving based on improved YOLOv5[J]. Scientific Reports, 2023, 13: 9711.
16
ZHAO Y L, WANG H, XIE X M, et al. An Enhanced YOLOv5-based algorithm for metal surface defect detection[J]. Applied Sciences, 2023, 13(20): 11473.
17
徐雷钧,周雅菲,陈建锋,等.基于太赫兹技术及YOLOv5s的碳纤维缺陷检测研究[J/OL].激光与光电子学进展,1-17[2024-09-20].
18
潘金晶,曾成,张晶,等.基于改进YOLOv5的陶瓷表面缺陷检测算法[J].现代信息科技,2024,8(13):70-75.
19
LI K N, JIAO P G, DING J M, et al. Bearing defect detection based on the improved YOLOv5 algorithm[J]. Plos One, 2024, 19(10): e0310007.
20
刘洋,李全勇,顾健,等.基于改进YOLOv5的缺陷识别与定量分析[J].无损检测,2023,45(1):14-22.
21
张浩洋,何仕荣,孟冬平.YOLOv5改进算法在机械零件中的识别与应用[J].软件工程与应用,2022,11(6):1446-1455.
22
琚恭伟,焦慧敏,张佳明,等.基于YOLOv5的医用外科手套左右手识别[J].制造业自动化,2021,43(12):189-192.
23
刘想德,马昊.基于YOLOv5的零件识别轻量化算法[J].组合机床与自动化加工技术,2024(5):100-104, 107.
24
李虎,胡晓兵,陈海军,等.基于改进YOLOv5s的玻璃盖板划伤检测算法[J].组合机床与自动化加工技术,2024(4):62-65, 71.
25
胡雅楠,余欢,吴圣川,等.基于机器学习的增材制造合金材料力学性能预测研究进展与挑战[J].力学学报,2024,56(7):1892-1915.
26
林轩杰,江汉同,李倩,等.基于机器学习的材料弹性性能预测及可视化分析[J].工程科学学报,2024,46(6):1120-1129.
27
宫祥瑞,蒋滢.机器学习在高分子材料基因组研究中的进展与挑战[J].高分子学报,2022,53(11):1287-1300.
28
王林.基于改进YOLOv5的阻燃材料燃烧时间检测[J].电脑知识与技术,2023,19(36):25-29, 33.
29
李容,冯侃,闫静,等.基于YOLOv5s的复合材料层合板层裂损伤局部稳态波场识别研究[J].固体力学学报,2023,44(5):672-678.
30
邓光伟,尤红权,朱志松.基于KCC-YOLOv5的铝型材表面缺陷检测[J].激光与光电子学进展,2024,61(4):1-9.
31
李少雄,史再峰,孔凡宁,等.一种面向钢材表面缺陷检测的改进型YOLOv5算法[J].激光与光电子学进展,2023,60(24):1-9.

Comments

PDF(578 KB)

Accesses

Citation

Detail

Sections
Recommended

/