Application and Research Progress of MOFs and Their Derivatives in Flame-Retardant Epoxy Resin Materials

WANG Gang, YANG Xu, GUO Wen-qin, ZHAO Zi-cheng, HOU Xia, LIU Ke

PDF(1637 KB)
PDF(1637 KB)
Plastics Science and Technology ›› 2024, Vol. 52 ›› Issue (11) : 147-152. DOI: 10.15925/j.cnki.issn1005-3360.2024.11.028
Review

Application and Research Progress of MOFs and Their Derivatives in Flame-Retardant Epoxy Resin Materials

Author information +
History +

Abstract

Metal-organic frameworks (MOFs) have attracted widespread attention in the field of flame retardancy due to their high specific surface area, pore volume, and thermal stability. The article reviews the recent research progress of MOFs and their derivatives in flame-retardant epoxy resin materials. The addition methods and effects of MOFs and their derivatives as flame retardants in epoxy resins are discussed, and the flame retardant mechanism of MOFs and their derivatives in flame-retardant epoxy resin materials is analyzed, including limiting oxygen index (LOI), smoke suppression performance, vertical combustion UL-94, mechanical properties, thermal stability, and catalytic carbonization. Finally, the future development direction and prospect of MOFs and their derivatives in flame-retardant epoxy resin materials are discussed.

Key words

Metal-organic frameworks / Flame retardant / Epoxy resin / Thermal stability

Cite this article

Download Citations
WANG Gang , YANG Xu , GUO Wen-qin , et al . Application and Research Progress of MOFs and Their Derivatives in Flame-Retardant Epoxy Resin Materials. Plastics Science and Technology. 2024, 52(11): 147-152 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.11.028

References

1
CHEN J, CHU N, ZHAO M, et al. Synthesis and application of thermal latent initiators of epoxy resins: A review[J]. Journal of Applied Polymer Science, 2020, DOI: 10.1002/APP.49592.
2
RUAN K P, ZHONG X, SHI X T, et al. Liquid crystal epoxy resins with high intrinsic thermal conductivities and their composites: A mini-review[J]. Materials Today Physics, 2021, DOI: 10.1016/j.mtphys.2021.100456.
3
SONG K P, WANG Y J, RUAN F, et al. Effects of a macromolecule spirocyclic inflatable flame retardant on the thermal and flame retardant properties of epoxy resin[J]. Polymers, 2020, DOI: 10.3390/polym12010132.
4
HU J H, SHAN J Y, WEN D H, et al. Flame retardant, mechanical properties and curing kinetics of DOPO-based epoxy resins[J]. Polymer Degradation and Stability, 2014, DOI: 10.1016/j.polymdegradstab.2014.07.026.
5
WANG X, GUO W W, SONG L, et al. Intrinsically flame retardant bio-based epoxy thermosets: A review[J]. Composites Part B: Engineering, 2019, DOI:10.1016/j.compositesb.2019.107487.
6
赵梓成,郭文琴,贾蕊汀,等.磷腈类阻燃剂在环氧树脂中的应用研究[J].塑料科技,2022,50(9):114-117.
7
LIU X F, XIAO Y F, LUO X, et al. Flame-retardant multifunctional epoxy resin with high performances[J]. Chemical Engineering Journal, 2021, DOI:10.1016/j.cej.2021.132031.
8
BISWAL D, KUSALIK P G. Probing molecular mechanisms of self-assembly in metal–organic frameworks[J]. ACS Nano, 2017,11: 1258-1268.
9
SONG K P, PAN Y T, ZHANG J, et al. Metal-organic frameworks-based flame-retardant system for epoxy resin: A review and prospect[J]. Chemical Engineering Journal, 2023, DOI: 10.1016/j.cej.2023.143653.
10
HOU Y B, XU Z M, CHU F K, et al. A review on metal-organic hybrids as flame retardants for enhancing fire safety of polymer composites[J]. Composites Part B: Engineering, 2021, DOI: 10.1016/j.compositesb.2021.109014.
11
SHEN R Q, QUAN Y FF, ZHANG Z R, et al. Metal-organic framework as an efficient synergist for intumescent flame retardants against highly flammable polypropylene[J]. Industrial & Engineering Chemistry Research, 2022, DOI: 10.1021/acs.iecr.2c00715.
12
ZHANG J, LI Z, QI X L, et al. Recent progress on metal–organic framework and its derivatives as novel fire retardants to polymeric materials[J]. Nano-Micro Letters, 2020, DOI: 10.1007/s40820-020-00497-z.
13
LIU L, WEI Q, YU X L, et al. Metal-organic framework-derived Co3O4/Au heterostructure as a catalyst for efficient oxygen reduction[J]. ACS Applied Materials & Interfaces, 2018, 10(40): 34068-34076.
14
OCKWIG N W, DELGADO-FRIEDRICHS O, O'KEEFFE M, et al. Reticular chemistry: Occurrence and taxonomy of nets and grammar for the design of frameworks[J]. Accounts of Chemical Research, 2005, 38(3): 176-182.
15
HASSAN S, HASSAN A, NADER NOROOZI P, et al. A MOF-on-MOF strategy to construct double Z-scheme heterojunction for high-performance photocatalytic degradation[J]. Applied Catalysis B: Environmental, 2022, DOI: 10.1016/j.apcatb.2022.122082.
16
ZHENG Y, LU Y S, ZHOU K Q. A novel exploration of metal-organic frameworks in flame-retardant epoxy composites[J]. Journal of Thermal Analysis and Calorimetry, 2019, 138: 905-914.
17
QIAN X D, SHI C L, WAN M, et al. Novel transition metal modified layered phosphate for reducing the fire hazards of PA6[J]. Composites Communications, 2022, DOI: 10.1016/j.coco.2022.101442.
18
HAN Z D, ZHANG W Y, SONG X N, et al. Fast char formation induced by POSS confining Co-MOF hollow prisms in epoxy composites with mitigated heat and smoke hazards[J]. Chemical Engineering Journal, 2023, DOI:10.1016/j.cej.2023.145682.
19
LEUS K, BOGAERTS T, DE DECKER J, et al. Systematic study of the chemical and hydrothermal stability of selected "stable" metal organic frameworks[J]. Microporous and Mesoporous Materials, 2016, 226: 110-116.
20
RAMSAHYE N A, GAO J, JOBIC H, et al. Adsorption and diffusion of light hydrocarbons in UiO-66(Zr): A combination of experimental and modeling tools[J]. The Journal of Physical Chemistry C, 2014, 118(47): 27470-27482.
21
ZHANG J, LI Z, SHAO Z B, et al. Hierarchically tailored hybrids via interfacial-engineering of self-assembled uio-66 and prussian blue analogue: Novel strategy to impart epoxy high-efficient fire retardancy and smoke suppression[J]. Chemical Engineering Journal, 2020, DOI:10.1016/j.cej.2020.125942.
22
ZHANG J, AO X, ZHANG X Q, et al. Construction of nanomaterials based on molybdenum disulfide decorated onto a metal-organic framework (UiO-66) to improve the fire retardancy of epoxy[J]. ACS Applied Nano Materials, 2022, 5(12): 17731-17740.
23
PAN Y T, ZHANG Z D, YANG R J. The rise of MOFs and their derivatives for flame retardant polymeric materials: A critical review[J]. Composites Part B: Engineering, 2020, DOI: 10.1016/j.compositesb.2020.108265.
24
YIN L, GONG K L, PAN H F, et al. Novel design of MOFs-based hierarchical nanoarchitecture: Towards reducing fire hazards of epoxy resin[J]. Composites Part A: Applied Science and Manufacturing, 2022, DOI:10.1016/j.compositesa.2022.106957.
25
LIU D Y, CUI Y H, ZHANG T L, et al. Improving the flame retardancy and smoke suppression of epoxy resins by introducing of DOPO derivative functionalized ZIF-8[J]. Polymer Degradation and Stability, 2021, DOI: 10.1016/j.polymdegradstab.2021.109749.
26
WANG H N, LI X Q, SU F F, et al. Core-shell ZIF67@ZIF8 modified with phytic acid as an effective flame retardant for improving the fire safety of epoxy resins[J]. ACS Omega, 2022, 7(25): 21664-21674.
27
SHI X H, LI X L, SHI H, et al. Insight into the flame-retardant mechanism of different organic-modified layered double hydroxide for epoxy resin[J]. Applied Clay Science, 2024, DOI: 10.1016/j.clay.2023.107233.
28
SHI X H, LI X L, LIU Q Y, et al. Constructing Co-decorated layered double hydroxide via interfacial assembly and its application in flame-retardant epoxy resin[J]. Composites Communications, 2023, DOI: 10.1016/j.coco.2023.101712.
29
SONG K P, LI X L, PAN Y T, et al. The influence on flame retardant epoxy composites by a bird's nest-like structure of Co-based isomers evolved from zeolitic imidazolate framework-67[J]. Polymer Degradation and Stability, 2023, DOI: 10.1016/j.polymdegradstab.2023.110318.
30
DUAN M T, LIU S J, JIANG Q M, et al. Recent progress on preparation and applications of layered double hydroxides[J]. Chinese Chemical Letters, 2021, 33(10): 4428-4436.
31
MOCHANE M J, MAGAGULA S I, SEFADI J S, et al. Morphology, thermal stability, and flammability properties of polymer-layered double hydroxide (LDH) nanocomposites: A review[J]. Crystals, 2020, DOI: 10.3390/cryst10070612.
32
WEI D, CAO Y Y, YAN L J, et al. Enhanced pseudo-capacitance process in nanoarchitectural layered double hydroxide nanoarrays hollow nanocages for improved capacitive deionization performance [J]. ACS Applied Materials & Interfaces, 2023,15(20): 24427-24436.
33
JIANG Z, LI Z P, QIN Z H, et al. LDH nanocages synthesized with MOF templates and their high performance as supercapacitors[J]. Nanoscale, 2013, 5: 11770-11775.
34
HU H, GUAN B Y, XIA B Y, et al. Designed formation of Co3O4/NiCo2O4 double-shelled nanocages with enhanced pseudocapacitive and electrocatalytic properties[J]. Journal of the American Chemical Society, 2015,137(16): 5590-5595.
35
PAN Y T, WAN J T, ZHAO X L, et al. Interfacial growth of MOF-derived layered double hydroxide nanosheets on graphene slab towards fabrication of multifunctional epoxy nanocomposites[J]. Chemical Engineering Journal, 2017, 330: 1222-1231.
36
KESKIN S, SHOLL D S. Selecting metal organic frameworks as enabling materials in mixed matrix membranes for high efficiency natural gas purification[J]. Energy & Environmental Science, 2010, 3: 343-351.
37
PAN Y T, ZHANG L, ZHAO X M, et al. Interfacial engineering of renewable metal organic framework derived honeycomb-like nanoporous aluminum hydroxide with tunable porosity[J]. Chemical Science, 2017, 8(5): 3399-3409.
38
BIFULCO A, VARGANICI C D, ROSU L, et al. Recent advances in flame retardant epoxy systems containing non-reactive DOPO based phosphorus additives[J]. Polymer Degradation and Stability, 2022, DOI: 10.1016/j.polymdegradstab.2022.109962.
39
VARGANICI C D, ROSU L, BIFULCO A, et al. Recent advances in flame retardant epoxy systems from reactive DOPO-based phosphorus additives[J]. Polymer Degradation and Stability, 2022, DOI: 10.1016/j.polymdegradstab.2022.110020.
40
RABE S, CHUENBAN Y, SCHARTEL B. Exploring the modes of action of phosphorus-based flame retardants in polymeric systems[J]. Materials, 2017, DOI: 10.3390/ma10050455.
41
HOU Y B, HU W Z, GUI Z, et al. A novel Co(Ⅱ)-based metal-organic framework with phosphorus-containing structure: Build for enhancing fire safety of epoxy [J]. Composites Science and Technology, 2017, DOI: 10.1016/j.compscitech.2017.08.032.
42
HOU B, ZHANG W, LU H, et al. Multielement flame-retardant system constructed with metal POSS-organic frameworks for epoxy resin[J]. ACS Applied Materials & Interfaces, 2022, 14(43): 49326-49337.
43
HUO S Q, SONG P A, YU B, et al. Phosphorus-containing flame retardant epoxy thermosets: Recent advances and future perspectives[J]. Progress in Polymer Science, 2021, DOI:10.1016/j.progpolymsci.2021.101366.
44
CHEN C J, WANG X L, LUO T, et al. Synthesis of solid reactive organophosphorus-nitrogen flame retardant and its application in epoxy resin[J]. Journal of Applied Polymer Science, 2023,DOI: 10.1002/app.54282.
45
NABIPOUR H, WANG X, SONG L, et al. Organic-inorganic hybridization of isoreticular metal-organic framework-3 with melamine for efficiently reducing the fire risk of epoxy resin[J]. Composites Part B: Engineering, 2021, DOI: 10.1016/j.compositesb.2021.108606.
46
NABIPOUR H, NIE S, WANG X, et al. Zeolitic imidazolate framework-8/polyvinyl alcohol hybrid aerogels with excellent flame retardancy[J]. Composites Part A: Applied Science and Manufacturing, 2019, DOI:10.1016/j.compositesa.2019.105720.
47
NABIPOUR H, NIE S, WANG X, et al. Highly flame retardant zeolitic imidazole framework-8@cellulose composite aerogels as absorption materials for organic pollutants[J]. Cellulose, 2020, 27: 2237-3351.
48
PANAPITIYA N P, WIJENAYAKE S N, HUANG Y, et al. Stabilization of immiscible polymer blends using structure directing metal organic frameworks (MOFs)[J]. Polymer, 2014, 55(8): 2028-2034.
49
KIM H H, SIM M J, LEE J C, et al. The effects of chemical structure for phosphorus-nitrogen flame retardants on flame retardant mechanisms [J]. Journal of Materials Science, 2023, 58: 6850-6864.
50
LU X, LEE A F, GU X L. Improving the flame retardancy of sustainable lignin-based epoxy resins using phosphorus/nitrogen treated cobalt metal-organic frameworks[J]. Materials Today Chemistry, 2022, DOI: 10.1016/j.mtchem.2022.101184.

Comments

PDF(1637 KB)

Accesses

Citation

Detail

Sections
Recommended

/