Effects of Different Cooling Conditions on Structure and Properties of PMP Porous Membranes

HUANG Lin-jie, YIN Liang-dong, XU Rui-jie, LEI Cai-hong

PDF(3874 KB)
PDF(3874 KB)
Plastics Science and Technology ›› 2024, Vol. 52 ›› Issue (11) : 105-110. DOI: 10.15925/j.cnki.issn1005-3360.2024.11.021
Process and Control

Effects of Different Cooling Conditions on Structure and Properties of PMP Porous Membranes

Author information +
History +

Abstract

In the process of preparing poly4-methyl-1-pentene (PMP) porous membranes based on the mechanism of thermal induced phase separation, the cooling conditions directly affect the microstructure, air permeability and mechanical properties of the porous membranes. In this paper, poly4-methyl-1-pentene/dioctyl phthalate/dibutyl phthalate (PMP/DOP/DBP) blends were prepared by a twin-screw extruder, and porous membranes were extracted by ethanol organic solvent. The effects of medium, temperature and time on the crystallization, microstructure, mechanics and permeability of the porous membranes were investigated. The results showed that the prepared porous PMP membranes showed good comprehensive properties with a crystallinity of 26.8%, uniform pore size distribution with the porosity of 67.5%, tensile strength of 8.5 MPa and oxygen transmission rate of 9.1 mL/(min∙cm2) under the cooling medium of water, temperature of 25 ℃ and time of 30 s.

Key words

Thermal induced phase separation / Poly4-methyl-1-pentene / Porous membrane

Cite this article

Download Citations
HUANG Lin-jie , YIN Liang-dong , XU Rui-jie , et al. Effects of Different Cooling Conditions on Structure and Properties of PMP Porous Membranes. Plastics Science and Technology. 2024, 52(11): 105-110 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.11.021

References

1
MARKOVA S, SHALYGIN M, PELZER M, et al. Application prospects of dense gas separation hollow fibers based on poly(4-methyl-1-pentene)[J]. Chemical Papers, 2020, 74(6): 1917-1921.
2
杜文博,刘洋,高建树,等.聚4-甲基-1-戊烯的制备及应用进展[J].精细石油化工,2023,40(5):76-80.
3
陶海俊,张军,王晓琳.聚4-甲基-1-戊烯微孔膜的研究进展[J].化工进展,2006(3):275-280.
4
吴芳宇,林亚凯,汪林,等.聚4-甲基-1-戊烯膜的制备与应用研究进展[J].高分子通报,2022(5):1-9.
5
NAREJO A R, QURESHI R F, ALMAS R, et al. Fabrication and characterization of co-electrospun cellulose/poly (4-methyl-1-pentene) nanofibers with improved tensile properties[J]. Materials Research Express, 2022, DOI: 10.1088/2053-1591/ac90a2.
6
杜宇倩,邵丽萍,潘福生,等.聚-4-甲基-1-戊烯中空纤维氧合膜的研究进展与面临的挑战[J].膜科学与技术,2021,41(3):169-178.
7
臧慧,樊文玲,李磊.聚-4-甲基-1-戊烯中空纤维膜式人工肺膜组件的氧气和二氧化碳传质性能研究[J].南京大学学报:自然科学,2023,59(5):858-864.
8
张云,张晶,高霏,等.ECMO在心血管药物中毒救治中的应用[J].临床急诊杂志,2020,21(10):832-839.
9
LLOYD D R, KINZER KE, TSENG H S. Microporous membrane formation via thermally induced phase separation. I. Solid-liquid phase separation[J]. Journal of Membrane Science, 1990, 52(3): 239-261.
10
KIM S S, LLOYD D R. Microporous membrane formation via thermally-induced phase separation. III. Effect of thermodynamic interactions on the structure of isotactic polypropylene membranes[J]. Journal of Membrane Science, 1991, 64(1): 13-29.
11
TANG Y, LI M, LIN Y, et al. A novel green diluent for the preparation of poly(4-methyl-1-pentene) membranes via a thermally-induced phase separation method[J]. Membranes, 2021, DOI: 10.3390/membranes11080622.
12
GUO Y H, SHAO L P, ZHANG R N, et al. Modified poly (4-methyl-1-pentene) membranes by surface segregation for blood oxygenation[J]. Journal of Membrane Science, 2023, DOI: 10.1016/j.memsci.2023.121695.
13
Guo Y H, Pan F S, Yang G Z Y, et al. Engineering metal-covalent organic framework-based hybrid oxygenation membranes for facilitated blood-gas exchange[J]. Journal of Membrane Science, 2023, DOI: 10.1016/j.memsci.2023.122088.
14
LUO D J, WEI F J, SHAO H J, et al. Effects of cooling ways on the structure of polypropylene hollow fiber membranes prepared by stretching[J]. International Polymer Processing, 2019, 34(2): 172-181.
15
向力,秦舒浩,罗大军,等.聚丙烯中空纤维膜的制备方法[J].塑料科技,2016,44(11):47-50.
16
黄鑫.热致相分离法制备聚4-甲基-1-戊烯中空纤维膜及其表面血液相容性改性[D].南京:南京大学,2020.
17
LIU M, LIU S H, XU Z L, et al. Formation of microporous polymeric membranes via thermally induced phase separation: A review[J]. Frontiers of Chemical Science and Engineering, 2016, 10(1): 57-75.
18
TAO H J, ZHANG J, WANG X L. Effect of diluents on the crystallization behavior of poly(4-methyl-1-pentene) and membrane morphology via thermally induced phase separation[J]. Journal of Applied Polymer Science, 2008, 108(2): 1348-1355.
19
TAO H J, ZHANG J, WANG X L, et al. Phase separation and polymer crystallization in a poly(4-methyl-1-pentene)-dioctylsebacate-dimethylphthalate system via thermally induced phase separation[J]. Journal of Polymer Science Part B: Polymer Physics, 2007, 45(2): 153-161.
20
LI Q, LIN H H, WANG X L. Preparation of sulfobetaine-grafted pvdf hollow fiber membranes with a stably anti-protein-fouling performance[J]. Membranes, 2014, 4(2): 181-199.
21
CHIANG Y C, CHANG Y, HIGUCHI A, et al. Sulfobetaine-grafted poly(vinylidene fluoride) ultrafiltration membranes exhibit excellent antifouling property[J]. Journal of Membrane Science, 2009, 339(1/2): 151-159.
22
熊璞.热致相分离法制备聚偏氟乙烯微孔膜的研究[D].广州:华南理工大学,2011.
23
张垚,唐毓婧,郭子芳,等.聚4-甲基-1-戊烯的合成、结构与应用研究进展[J].合成树脂及塑料,2023,40(3):62-67, 86.
24
ZHANG T Q, HAO S, XIAO J, et al. Preparation of poly(4-methyl-1-pentene) membranes by low-temperature thermally induced phase separation[J]. ACS Applied Polymer Materials, 2023, 5(3): 1998-2005.
25
严大东,张兴华.聚合物结晶理论进展[J].物理学报,2016,65(18):106-116.

Comments

PDF(3874 KB)

Accesses

Citation

Detail

Sections
Recommended

/