Study on Non-Isothermal Crystallization Kinetics of PBAT/talc Powder Composites

XIONG Xu, GUO Shi-cheng, CHEN Xiao-song, MA Li-bo, LI Shan-shan, JIANG Xiao-wei

PDF(2065 KB)
PDF(2065 KB)
Plastics Science and Technology ›› 2024, Vol. 52 ›› Issue (11) : 52-58. DOI: 10.15925/j.cnki.issn1005-3360.2024.11.010
Theory and Research

Study on Non-Isothermal Crystallization Kinetics of PBAT/talc Powder Composites

Author information +
History +

Abstract

The non-isothermal crystallization behavior and kinetics of PBAT, PBAT/talc powder composites was studied by differential scanning calorimentry combined with the Avrami equation. The modified Avrami theories of Jeziorny and Mo's method were used to analyze the data. The activation energy of non-isothermal crystallization of PBAT and PBAT/talc powder composites were calculated by Kissinger's method. The results showed that proper talc powder had the effect of heterogeneous nucleation in crystallization, increased the crystallization temperature and crystallization rate of PBAT, and decreased the grain size. When the mass fraction of talc powder were 20%, the crystallization rate and absolute value of non-isothermal crystallization activation energy reached the highest value. However, when the talc content is too high, the melt viscosity of the composites increases significantly, the movement of the PBAT molecular chain is blocked, and the speed of regular and orderly arrangement decreases, resulting in a decrease in the crystallization rate and the absolute value of non-isothermal crystallization activation energy.

Key words

Poly(adipic acid)/butylene terephthalate / Talc powder / Differential scanning calorimetry / Non-isothermal crystallization kinetics / Crystallization activation energy

Cite this article

Download Citations
XIONG Xu , GUO Shi-cheng , CHEN Xiao-song , et al . Study on Non-Isothermal Crystallization Kinetics of PBAT/talc Powder Composites. Plastics Science and Technology. 2024, 52(11): 52-58 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.11.010

References

1
李建军.塑料工业:绿色低碳循环[J].塑料工业,2022,5(6):1-17.
2
QU J, HUANG Z X, YANG Z T, et al. Industrial-scale polypropylene-polyethylene physical alloying toward recycling[J]. Engineering, 2022, 9(2): 95-100.
3
王琪,瞿金平,石碧,等.我国废弃塑料污染防治战略研究[J].中国工程科学,2021,23(1):160-166.
4
ZHU L, XIE C Y, CHEN L K, et al. Transport of microplastics in the body and interaction with biological barriers, and controlling of microplastics pollution[J]. Ecotoxicology and Environmental Safety, 2023, DOI: 10.1016/j.ecoenv.2023.114818.
5
孙文潇,杨帆,侯梦宗,等.环境中的微塑料污染及降解[J].中国塑料,2023,37(11):117-126.
6
张涛,钟永红,聂绍丽,等.可生物降解材料材质分析研究进展[J].塑料科技,2023,51(11):99-104.
7
PAN H W, WANG Y, JIA S L, et al. Biodegradable poly(butylene adipate-co-terephthalate)/poly(glycolic acid) films: Effect of poly(glycolic acid) crystal on mechanical and barrier properties[J]. Chinese Journal of Polymer Science, 2023, 41(7):1123-1132.
8
LUO S S, SHI M, SONG J L, et al. Effect of chain extender on morphologies and properties of PBAT/PLA composites[J]. Journal of Thermoplastic Composite Materials, 2023, 36(3):1175-1186.
9
AVERSA C, BARLETTA M, CAPPIELLO G, et al. Compatibilization strategies and analysis of morphological features of poly(butylene adipate-co-terephthalate) (PBAT)/poly(lactic acid) PLA blends: A state-of-art review[J]. European Polymer Journal, 2022, DOI: 10.1016/j.eurpolymj.2022.111304.
10
DENIAL M, KARTHIKEYAN S, GODSE R, et al. Poly(butylene adipate-co-terephthalate) polyester synthesis process and product development[J]. Polymer Science, Series C, 2021, 63(1): 102-111.
11
李露露,张成峰,张先明.不同共聚组成聚己二酸丁二醇酯-对苯二甲酸丁二醇酯的制备及相对分子质量[J].高分子材料科学与工程,2023,39(9):19-26.
12
胡晨曦,王宇韬,吕明福,等.滑石粉改性PBAT/PLA复合材料的制备与性能研究[J].塑料科技,2022,44(7):44-48.
13
苗蔚,程文喜,张天羽,等.木质纤维和滑石粉混合填充PBS的制备及性能[J].工程塑料应用,2022,50(4):26-30.
14
丁蕊,徐昂,刘倚帆,等.滑石粉增强增韧聚乳酸生物可降解材料进展[J].塑料,2022,51(3):58-65.
15
黄秀龙,张华,季欣,等.滑石粉对PLA/PBAT 共混物非等温结晶行为的影响[J].塑料科技,2018,46(10):45-50.
16
熊煦,张枝苗,马立波,等.PP/PP-g-MAH/废PCB粉复合材料非等温结晶动力学研究[J].中国塑料,2018,32(7):72-77.
17
JEZIORNY A. Parameters Characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by DSC[J]. Polymer, 1978, 19: 1142-1144.
18
杨红艳,王国芳,王伟,等.磷石膏增强聚丙烯复合材料的非等温结晶动力学[J].合成树脂及塑料,2022,39(4):65-69.
19
ZHANG H X, PARK M J, MOON Y K, et al. An efficient organic additive to control the crystallization rate of aliphatic polyketone: A non-isothermal crystallization kinetics study[J]. Chinese Journal of Polymer Science, 2017, 35(4): 547-557.
20
OZAWA T. Kinetics of non-isothermal crystallization[J]. Polymer, 1971, 12: 150-158.
21
周志斌,刘跃军,刘小超.改性纳米SiO2填充PLA/PBAT复合体系的结晶动力学研究[J].包装学报,2017,9(3):9-24.
22
莫志深.一种研究聚合物非等温结晶动力学的方法[J].高分子学报,2008(7):656⁃661.
23
LIU T, MO Z, WANG S, et al. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone)[J]. Polymer Engineering &Science,1997, 37(3): 568-575.
24
WANG Z Q, HU G S, ZHANG J T, et al. Non-isothermal crystallization kinetics of nylon10T and nylon10T/1010 copolymers: Effect of sebacic acid as a third comonomer[J]. Chinese Journal of Chemical Engineering, 2017, 25(7): 963-970.
25
蒋珊,谢聪,杜欣瑶,等.PA66/PA6I6T共混物非等温结晶动力学及性能[J].高分子材料科学与工程,2020,36(5):98-106.

Comments

PDF(2065 KB)

Accesses

Citation

Detail

Sections
Recommended

/