Study of Pyrolysis Kinetics of Silicone Rubber Composite Insulators by Thermogravimetric Analysis

LI Zi-you, LEI Ming-dong, LI Qiang, GAN Qiang, ZHAO Yin-shan, CHEN Jian-zhe

PDF(2123 KB)
PDF(2123 KB)
Plastics Science and Technology ›› 2024, Vol. 52 ›› Issue (11) : 30-36. DOI: 10.15925/j.cnki.issn1005-3360.2024.11.006
Theory and Research

Study of Pyrolysis Kinetics of Silicone Rubber Composite Insulators by Thermogravimetric Analysis

Author information +
History +

Abstract

The pyrolysis kinetics of silicone rubber insulators (SiR) in nitrogen (N2) and air environments were studied by thermogravimetric analysis (TGA). Three transformation models, Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS), and Friedman (FR) methods, were applied to calculate activation energy and pre-exponential factors. The average activation energies of FWO, KAS, and FR methods under N2 atmosphereare were 421.46, 431.60, 433.98 kJ/mol, respectively. The pre-exponential factor ranged from 109 to 1016, which illustrated that the pyrolysis was independent of surface area. Under the air atmosphere, the average activation energies of FWO, KAS, and FR methods were 127.21, 120.93, 123.38 kJ/mol, respectively. The value of pre-exponential factor ranged from 108 to 109, and pyrolysis was controlled by surface area. The thermodynamic properties of the reaction under N2 atmosphere, such as enthalpy changes (ΔH), Gibbs free energy (ΔG) and entropy change (ΔS) were much higher than that under air atmosphere, confirming the complexity of the reaction in N2. The results of the study contribute to a deeper understanding of the combustion mechanism of SiR and provide a reference for its feasibility as a more effective high-temperature resistant material.

Key words

SiR / TGA / Pyrolysis kinetics / Activation energy

Cite this article

Download Citations
LI Zi-you , LEI Ming-dong , LI Qiang , et al . Study of Pyrolysis Kinetics of Silicone Rubber Composite Insulators by Thermogravimetric Analysis. Plastics Science and Technology. 2024, 52(11): 30-36 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.11.006

References

1
徐林,曾本忠,王超,等.我国高性能合成橡胶材料发展现状与展望[J].中国工程科学,2020,22(5):128-136.
2
梁曦东,高岩峰,王家福,等.中国硅橡胶复合绝缘子快速发展历程[J].高电压技术,2016,42(9):2888-2896.
3
王鑫,李超芹.硅橡胶的结晶行为及动力学研究[J].橡胶工业,2023,70(5):330-335.
4
ANDRIOT M, DEGROOT J V, MEEKS R, et al. Silicones in industrial applications[M]//Inorganic Polymers. New York:Nova Science Publishers, 2007.
5
HE C, LI B Q, REN Y, et al. How the crosslinking agent influences the thermal stability of RTV phenyl silicone rubber[J]. Materials, 2018, DOI:10.3390/ma12010088.
6
LIU S W, YU J, BIKANE K, et al. Rubber pyrolysis: Kinetic modeling and vulcanization effects[J]. Energy, 2018, 155: 215-225.
7
KORKUT A. Determination of kinetic triplet, thermal degradation behaviour and thermodynamic properties for pyrolysis of a lignocellulosic biomass[J]. Bioresource Technology, 2021, DOI: 10.1016/j.biortech.2021.125438.
8
SORIA-VERDUGO A, MORGANO M T, MAETZING H, et al. Comparison of wood pyrolysis kinetic data derived from thermogravimetric experiments by model-fitting and model-free methods[J]. Energy Conversion & Management, 2020, DOI:10.1016/j.enconman.2020.112818.
9
KOSTETSKYY P, BROADBELT L J. Progress in modeling of biomass fast pyrolysis: A review[J]. Energy & Fuels, 2020, 34(12): 15195-15216.
10
LACHAUD J, SCOGGINS J B, MAGIN T E, et al. A generic local thermal equilibrium model for porous reactive materials submitted to high temperatures[J]. International Journal of Heat and Mass Transfer, 2017, 108: 1406-1417.
11
CHACON A L, DEATON B, BESSIRE K B, et al. Chemical and structural degradation of room temperature vulcanizing (RTV) silicone at high temperatures[J]. Polymer Degradation and Stability, 2024, DOI: 10.1016/j.polymdegradstab.2024.110661.
12
Foster C W, SREEVISHNU O, FRANCESCO P. Real-time quantitative imaging of RTV silicone pyrolysis[J]. Polymer Degradation and Stability, 2023, DOI:10.1016/j.polymdegradstab.2023.110403.
13
王雪蓉,王倩倩,刘运传,等.基于热重分析法的苯基硅橡胶热分解行为研究[J].橡胶工业,2021,68(9):699-704.
14
雷超平,莫文雄,栾乐,等.复合绝缘子硅橡胶伞裙热老化特性研究[J].电工技术,2018(22):20-22.
15
郭慧敏,李翔宇,王海彦,等.纤维素和聚丙烯共催化热解热重分析及动力学研究[J].太阳能学报,2017,38(10):2705-2711.
16
刘义彬,马晓波,陈德珍,等.废塑料典型组分共热解特性及动力学分析[J].中国电机工程学报,2010,30(23):56-61.
17
SHIMADA A, SUGIMOTO M, KUDOH H, et al. Degradation mechanisms of silicone rubber (SiR) by accelerated ageing for cables of nuclear power plant[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(1):16-23.
18
孙进,谢诗琪,董翠翠,等.硅橡胶复合绝缘子老化评估的研究进展[J].石油化工,2020,49(2):202-208.
19
AMIN M, AKBAR M, AMIN S. Hydrophobicity of silicone rubber used for outdoor insulation (an overview)[J]. Gan, 2007, 14(10): 837-43.
20
赵欢欢,邢文听,宋香琳,等.玉米秸秆热解特性及动力学分析[J].生物质化学工程,2022,56(4):9-14.
21
叶晓川,曾黎明,张超,等.酚醛树脂固化的非模型拟合动力学研究[J].武汉理工大学学报,2012,34(1):36-40.
22
曹伟伟,朱波,朱文滔,等.基于非等温法的耐高温环氧树脂体系固化反应动力学研究[J].材料工程,2014(8):67-71.
23
马卫东,吕长志,李志国,等.Arrhenius方程应用新方法研究[J].微电子学,2011,41(4):621-626.
24
汤元君,李璇,董隽,等.废弃PVC塑料热解过程多尺度反应动力学特性研究[J].中国塑料,2022,36(5):89-98.
25
姬爱民,杜铎,李若晗.基于多峰高斯拟合和Friedman法对瓜子壳热解特性研究[J].节能,2020,39(1):110-112.
26
WU L, JIANG X G, LV G J, et al. Analysis of the pyrolysis of solid recovered fuel and its sorted components by using TG-FTIR and DAEM[J]. Journal of Thermal Science, 2023, 32 (4): 1671-1683.
27
李先达,钟振兴,杨志,等.污泥稻秆共热解特性及动力学分析[J].桂林理工大学学报,2018,38(1):132-138.

Comments

PDF(2123 KB)

Accesses

Citation

Detail

Sections
Recommended

/