
Prediction of Tensile Properties of CFRP Laminates with Different Aspect Ratios Under Hot and Humid Environments
GAI Di, FENG Xue-jian, ZHANG Lei, XU Hai, ZHAO Zheng
Prediction of Tensile Properties of CFRP Laminates with Different Aspect Ratios Under Hot and Humid Environments
Mechanical connection, as the main connection method at present, holes shall be made on the surfaces of connectors and connected parts, and the mechanical properties of the structural parts containing holes will be decreased to a certain extent. In order to study the tensile properties of carbon fiber reinforced polymer (CFRP) laminates with different width-to-diameter ratios under humid-heat environments, CFRP laminates containing center penetration holes with diameters of 1, 2, 3, 4, 5 mm, respectively, were prepared, and their damage morphology, stress-strain curves, and strength degradation were analyzed at 71 ℃ and 85% RH. The results show that the CFRP laminates in the room temperature dry (RTD) environment have a flat fracture with the basic characteristics of brittle fracture; the CFRP laminates in the elevated temperature wet (ETW) environment have the phenomena of interlayer delamination and fiber adhesion fracture, and delayed fracture occurs in the tensile process of the test pieces; the tensile strengths of the test pieces in the RTD and ETW environments decrease with the increase of the pore diameters. The tensile strength of the specimens in both RTD and ETW environments decreases with increasing pore size. In order to predict the tensile properties of porous laminates under humid and hot environments, a prediction formula based on the PSC criterion is proposed.
Hot and humid environment / CFRP / Tensile properties / Destruction of topography
1 |
黄亿洲,王志瑾,刘格菲.碳纤维增强复合材料在航空航天领域的应用[J].西安航空学院学报,2021,39(5):44-51.
|
2 |
吴世宝,陈冠旭,马佳,等.高温环境对含孔复合材料层合板屈曲性能的影响[J].河南科学,2020,38(5):703-709.
|
3 |
姚宇超,许希武,毛春见.湿热环境下开孔复合材料层合板的强度[J].材料科学与工程学报,2015,33(3):425-431.
|
4 |
展全伟,范学领,孙秦.复合材料孔板在湿热环境下的力学性能研究[J].固体火箭技术,2011,34(6):764-767.
|
5 |
|
6 |
|
7 |
|
8 |
|
9 |
贾云龙.吸湿对单向亚麻纤维复合材料力学性能的影响[J].复合材料学报,2022,39(2):608-616.
|
10 |
杨旭东,安涛,邹田春,等.湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J].2019,47(7):84-91.
|
11 |
张武昆,闫伟,王会平,等.不同环境下宽径比对碳纤维增强环氧树脂复合材料开孔层压板压缩失效的影响[J].复合材料学报,2020,37(2):267-275.
|
12 |
|
13 |
|
14 |
|
15 |
|
16 |
|
17 |
|
18 |
和栋庆,赵立杰,杨康,等.基于适航符合性的带孔复合材料板力学性能研究[J].沈阳航空航天学报,2023,40(2):8-14.
|
19 |
|
20 |
BAL S,
|
21 |
|
22 |
|
23 |
|
24 |
|
25 |
|
26 |
|
27 |
|
28 |
|
29 |
许名瑞,曾本银,熊欣,等.湿热环境下碳纤维层合板拉伸疲劳性能[J].北京航空航天大学学报,2023,49(7):1614-1622.
|
/
〈 |
|
〉 |