Research on Multi-Objective Formulation Optimization of High-Performance EPDM Rubber Based on Grey Correlation Analysis

ZHAN You-ji, ZHANG Meng-meng, ZHENG Tian-qing, XU Yong-chao, XIA Yong-feng

PDF(950 KB)
PDF(950 KB)
Plastics Science and Technology ›› 2024, Vol. 52 ›› Issue (10) : 108-113. DOI: 10.15925/j.cnki.issn1005-3360.2024.10.022
Process and Control

Research on Multi-Objective Formulation Optimization of High-Performance EPDM Rubber Based on Grey Correlation Analysis

Author information +
History +

Abstract

Ethylene propylene diene monomer (EPDM) rubber has good weather resistance, ozone resistance, water resistance, and chemical corrosion resistance. In order to increase the tensile strength of EPDM rubber to>10 MPa and the compressive strain (100 ℃× 22 HR)≤30%, volume change rate<10% to meet industrial needs, the article takes EPDM rubber as the research object, selects raw rubber Mooney viscosity, operating oil viscosity, filler type and filler dosage as process parameters for orthogonal test, prepares vulcanized rubber under different formulations through experimental methods, and measures its physical properties. On this basis, the range analysis method is used to determine the primary and secondary effects of process parameters on performance indicators. Subsequently, the experimental data is simplified using multiple indicators based on grey correlation theory. The results show that when using Langsheng 6950 as raw rubber, P600 as operating oil, and 30 phr of N774 as filler, the tensile strength of EPDM rubber is 13 MPa, the compressive strain is 30.26%, and the volume change rate is 2.8%.

Key words

EPDM rubber / Grey correlation theory / Multi-objective optimization

Cite this article

Download Citations
ZHAN You-ji , ZHANG Meng-meng , ZHENG Tian-qing , et al . Research on Multi-Objective Formulation Optimization of High-Performance EPDM Rubber Based on Grey Correlation Analysis. Plastics Science and Technology. 2024, 52(10): 108-113 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.10.022

References

1
李天涯,周珂,张长茂,等.基于三元乙丙橡胶配方优化及机理分析[J].弹性体,2021,31:29-34.
2
房孝栋,吴明生.无卤氮磷系阻燃剂对阻燃三元乙丙橡胶胶料性能的影响[J].橡胶工业,2023,70(3):182-188.
3
庄凌志,何成,杨柱石.耐低温三元乙丙橡胶的制备及其性能研究[J].塑料科技,2023,51(10):48-52.
4
都昌泽,袁兆奎,张卓,等.碳纳米管增强三元乙丙橡胶性能[J].弹性体,2020,30(2):11-14.
5
吕鹏飞,李仪,冯广庆,等.适用于板式支座的三元乙丙橡胶超弹性本构模型研究[J].橡胶科技,2021,19(5):219-22.
6
杨前勇,吕同策,康乐,等.三元乙丙橡胶吸水膨胀橡胶性能的研究[J].橡胶工业,2021,68(5):351-356.
7
王玉瑛,侯立波,王微.2020年乙丙橡胶市场分析及技术进展[J].化学工业,2021,39(3):68-75.
8
王倩,刘波.三元乙丙橡胶应用市场分析及改性技术研究进展[J].化工管理,2020(10):91-92.
9
谈炳东,郑健,许进升,等.短纤维增强三元乙丙薄膜拉伸破坏率相关Tsai-Hill强度准则[J].复合材料学报,2018,35(6):1646-1651.
10
王恒,钱坤,柯玉超,等.天然橡胶/三元乙丙橡胶合金弹性体的共硫化及耐热氧老化性能[J].合成橡胶工业,2021,44(4):294-299.
11
SALVATORI P E, SáNCHEZ G, LOMBARDI A, et al. Optimization of properties in a rubber compound containing a ternary polymer blend using response surface methodology[J]. Journal of Applied Polymer Science, 2018, DOI: 10.1002/app.46548.
12
LIN Y, WANG L M, YIN F H, et al. Comparison of four commonly used high temperature vulcanized silicone rubber formulas for outdoor insulator and their regional adaptability[J]. Journal of Applied Polymer Science, 2019, DOI: 10.1002/app.47477.
13
PENG L F, LI Z D, LI Y Y. Strain amplitude effect on the viscoelastic mechanics of chloroprene rubber[J]. Acta Mechanica Solida Sinica, 2019, 33(3): 392-402.
14
HAN Y, HE Q, ZHENG B. Study on rubber surface enhancement of fiber fabric[J]. Journal of Polymer Research, 2021, DOI: 10.1007/s10965-021-02444-x.
15
梁锦鹏,高齐圣.基于改进布谷鸟搜索—高斯过程的橡胶配方预测研究[J].青岛大学学报:自然科学版,2023,36(1):35-41.
16
万达淳,郑闻运,陈弩.基于橡胶配方和工艺的轮胎产品经济性分析[J].橡胶科技,2022,20(5):247-249.
17
程安仁,陆永俊,矫阳.Scilab在橡胶配方设计、数据分析和可视化模拟中的应用[J].特种橡胶制品,2021,42(3):38-41, 62.
18
陈晓杰.NBR耐油密封橡胶配方体系研究[D].青岛:青岛科技大学,2020.
19
吕至祺,武志刚.Matlab可视化建模对橡胶配方的性能预测和优化调整[J].特种橡胶制品,2019,40(5):62-65.
20
王登辉.基于灰色关联理论的多源航迹关联方法[J].信息技术与信息化,2023(6):95-98.
21
YUE T Y, ZHANG S, WANG C Y, et al. Effects of selective laser melting parameters on surface quality and densification behaviours of pure nickel[J]. Transactions of Nonferrous Metals Society of China, 2020, 32(8): 2634-2647.
22
WANG Z, XIAO Z Y, TSE Y, et al. Optimization of processing parameters and establishment of a relationship between microstructure and mechanical properties of SLM titanium alloy[J]. Optics and Laser Technology, 2019, 112: 159-167.
23
冯晓杰.一种基于灰色关联度分析的复杂铁路能力计算[J].中国科技信息,2023,24:92-95.
24
LI J C, HU J X, CAO L C, et al. Multi-objective process parameters optimization of SLM using the ensemble of metamodels[J]. Journal of Manufacturing Processes, 2021, 68(PA): 198-209.
25
薛菁菁,贺兴时,冯颖,等.基于组合赋权的图像分割灰色评估模型[J].激光与光电子学进展,2018,55(6):154-160.
26
陈侠宇,黄卫东,张伟杰,等.基于灰色关联分析的选区激光熔化成形18Ni300模具钢多目标工艺优化[J].中国激光,2020,47(5):341-351.

Comments

PDF(950 KB)

Accesses

Citation

Detail

Sections
Recommended

/