Research Progress of UHMWPE Dynamic Molding

HU Song-xi, CHEN Xin-du, HE Jian-heng, LI Rui-wei

PDF(962 KB)
PDF(962 KB)
Plastics Science and Technology ›› 2024, Vol. 52 ›› Issue (09) : 148-152. DOI: 10.15925/j.cnki.issn1005-3360.2024.09.028
Review

Research Progress of UHMWPE Dynamic Molding

Author information +
History +

Abstract

Various dynamic force fields or coupling force fields are introduced into the molding process of ultra-high molecular weight polyethylene (UHMWPE), which effectively solves the problems of long molding cycle, high energy consumption, difficult to manufacture high-performance products and difficult to be applied to the molding of composites in static molding methods such as molding and sintering. In this paper, the research and application of dynamic force fields such as high velocity compaction force field, ultrasonic vibration force field, shear/tension force field, pulse vibration force field, and synergistic effect of pulse vibration force field and melt flow field in the molding of UHMWPE and its composites are described respectively. The principles and characteristics of UHMWPE dynamic molding under the action of each dynamic force field are analyzed. Finally, by comparing and analyzing the advantages and disadvantages of various dynamic molding methods of UHMWPE, it is concluded that the tension force field, pulse vibration force field, and synergistic effect of pulse vibration force field and melt flow field can significantly improve the properties of UHMWPE, providing new ideas and directions for UHMWPE efficient molding.

Key words

Ultra-high molecular weight polyethylene / Dynamic / Molding

Cite this article

Download Citations
HU Song-xi , CHEN Xin-du , HE Jian-heng , et al. Research Progress of UHMWPE Dynamic Molding. Plastics Science and Technology. 2024, 52(09): 148-152 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.09.028

References

1
MALITO L G. The deformation, yielding, and fracture of ultra-high molecular weight polyethylene for use in total joint replacements[D]. State of California: University of California, Berkeley, 2018.
2
URECZKI G, KESZEI K. Prospects in innovative manufacturing technology of UHMWPE for prostheses and comparison with medical grade UHMWPE[J]. Biomechanica Hungarica, 2019, 12(1): 43-51.
3
宋新月,魏悦,沈杰,等.超高分子量聚乙烯模塑板材的抗冲击机制[J].高等学校化学学报,2023,44(4):188-197.
4
任悦,康文倩,陈德文,等.超高相对分子质量聚乙烯加工及应用进展[J].现代塑料加工应用,2023,35(4):55-59.
5
邹悦,张鹏宇,成博,等.人工关节UHMWPE交叉剪切磨损的试验研究[J].机械设计与制造工程,2023,52(2):112-116.
6
辛明亮,杜海晶,笪菁,等.超高分子量聚乙烯分子量测试方法研究进展[J].塑料科技,2023,51(2):105-108.
7
YILMAZ G, ELLINGHAM T, TURNG L S. Injection and injection compression molding of ultra-high-molecular weight polyethylene powder[J]. Polymer Engineering and Science, 2018, 59(2): 170-179.
8
蒋红梅,唐劲松.超高分子量聚乙烯非等温结晶行为及其结晶动力学[J].工程塑料应用,2019,47(8):114-117, 123.
9
王伟,吴亮,严岩,等.超高分子量聚乙烯流变性能及挤出性能研究[J].合成技术及应用,2022,37(2):41-45.
10
WANG Y H, JIA D, ZHAN S P, et al. Properties of compression molded ultra-high molecular weight polyethylene: Effects of varying process conditions[J]. Journal of Polymer Engineering, 2023, 43(1): 66-79.
11
李璞,胡松喜,杨森泉,等.UHMWPE模压成型方法与技术进展[J].塑料,2023,52(6):111-115.
12
杜悦.维生素E应用于UHMWPE人工关节的进展[J].塑料,2021,50(5):78-81, 146.
13
DONG P, ZHANG Q, WANG K, et al. Pursuit of the correlation between yield strength and crystallinity in sintering-molded UHMWPE[J]. Polymer: The International Journal for the Science and Technology of Polymers, 2021, DOI: 10.1016/j.polymer.2020.123352.
14
高枢健,何继敏,鲍泉,等.粉末烧结法制备超高分子量聚乙烯微孔滤材[J].塑料,2018,47(5):33-35, 76.
15
FU J, GHALI B W, LOZYNSKY A J, et al. Ultra-high molecular weight polyethylene with improved plasticity and toughness by high temperature melting[J]. Polymer, 2010, 51(12): 2721-2731.
16
JAUFFRÈS D, LAME O, VIGIER G, et al. Yield, creep, and wear properties of ultra-high molecular weight polyethylene processed by high velocity compaction[J]. Journal of Applied Polymer Science, 2010, 110(5): 2579-2585.
17
吴敬寒,董澎,王子瑞,等.提高超高分子量聚乙烯的耐磨性:交联与结晶[J].高分子学报,2023,54(5):622-630.
18
JAUFFRÈS D, LAME O, VIGIER G, et al. Microstructural origin of physical and mechanical properties of ultra-high molecular weight polyethylene processed by high velocity compaction[J]. Polymer, 2007, 48(21): 6374-6383.
19
JAUFFRÈS D, LAME O, VIGIER G, et al. How nascent structure of semicrystalline polymer powders enhances bulk mechanical properties[J]. Macromolecules, 2008, 41(24): 9793-9801.
20
JAUFFRÈS D, LAME O, VIGIER G, et al. Sintering mechanisms involved in high-velocity compaction of nascent semicrystalline polymer powders[J]. Acta Materialia, 2009, 57(8): 2550-2559.
21
DOUCET N, LAME O, VIGIER G, et al. Sintering kinetics of UHMWPE nascent powders by high velocity compaction: Influence of molecular weight[J]. European Polymer Journal, 2013, 49(6): 1654-1661.
22
LIANG X, LIU Y J, CHEN S G, et al. Fabrication of microplastic parts with a hydrophobic surface by micro ultrasonic powder moulding[J]. Journal of Manufacturing Processes, 2020, 56(8): 180-188.
23
DVILIS E S, PANIN S V, ALEXENKO V O, et al. Structure and tribomechanical properties of polymer compacts fabricated by ultrasonic consolidation and compression moulding of UHMWPE powder[J]. AIP Conference Proceedings, 2018, DOI: 10.1063/1.5083313.
24
梁雄.聚合物微塑件超声模压粉末成型方法及其塑化机理[D].哈尔滨:哈尔滨工业大学,2015.
25
YU H W, LEE C H, JUNG P G, et al. Polymer microreplication using ultrasonic vibration energy[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2009, DOI: 10.1117/1.3129824.
26
SÁNCHEZ X, HERNÁNDEZ M, ELIZALDE L E, et al. Micro injection molding processing of UHMWPE using ultrasonic vibration energy[J]. Materials & Design, 2017, 132: 1-12.
27
MARKEVICH I A, SELYUTIN G Y, POLUBOYAROV V A, et al. Influence of ultrasonic treatment on mechanical and electro-physical characteristics of UHMWPE/MWCNT composites[J]. Materials Today: Proceedings, 2020, 25(2): 523-535.
28
YIN X C, LI S, HE G J, et al. Preparation and characterization of CNTs/UHMWPE nanocomposites via a novel mixer under synergy of ultrasonic wave and extensional deformation[J]. Ultrasonics Sonochemistry, 2018, 43: 15-22.
29
WANG L, YIN X C, HE G J, et al. Ultrasound-assisted melt mixing for the preparation of UHMWPE/OMMT nanocomposites[J]. Journal of Thermoplastic Composite Materials, 2018, 31(6): 784-802.
30
XU L, CHEN C, ZHONG G J, et al. Tuning the superstructure of ultra-high molecular weight polyethylene/low molecular weight polyethylene blend for artificial joint application[J]. ACS Applied Materials & Interfaces, 2012, 4(3): 1521-1529.
31
YANG H R, LEI J, LI L, et al. Formation of interlinked shish-kebabs in injection-molded polyethylene under the coexistence of lightly cross-linked chain network and oscillation shear flow[J]. Macromolecules, 2012, 45(16): 6600-6610.
32
XU H, ZHONG G J, FU Q, et al. Formation of shish-kebabs in injection-molded poly(l-lactic acid) by application of an intense flow field[J]. ACS Applied Materials & Interfaces, 2012, 4(2): 6774-6784.
33
QIN S, XU W H, JIANG H W, et al. Simultaneously achieving self-toughening and self-reinforcing of polyethylene on an industrial scale using volume-pulsation injection molding[J]. Polymer, 2020,DOI: 10.1016/j.polymer.2020.123324.
34
CHRISTAKOPOULOS F, BERSENEV E, GRIGORIAN S, et al. Melting-induced evolution of morphology, entanglement density, and ultradrawability of solution-crystallized ultrahigh-molecular-weight polyethylene[J]. Macromolecules, 2021, 54(12): 5683-5693.
35
HUANG Y F, XU J Z, LI J S, et al. Mechanical properties and biocompatibility of melt processed, self-reinforced ultra-high molecular weight polyethylene[J]. Biomaterials, 2014, 35(25): 6687-6697.
36
HUANG Y F, XU J Z, ZHANG Z C, et al. Melt processing and structural manipulation of highly linear disentangled ultra-high molecular weight polyethylene[J]. Chemical Engineering Journal, 2017, 315: 132-141.
37
SHEN H W, HE L, FAN C H, et al. Improving the integration of HDPE/UHMWPE blends by high temperature melting and subsequent shear[J].Materials Letters, 2015, 138: 247-250.
38
ZHANG L, LU C, DONG P, et al. Realizing mechanically reinforced all-polyethylene material by dispersing UHMWPE via high-speed shear extrusion[J]. Polymer: The International Journal for the Science and Technology of Polymers, 2019, DOI: 10.1016/j.polymer.2019.121711.
39
FAVREAU H J, MIROSHNICHENKO K I, SOLBERG P C, et al. Shear enhancement of mechanical and microstructural properties of synthetic graphite and ultra-high molecular weight polyethylene carbon composites[J]. Journal of Applied Polymer Science, 2022, DOI: 10.1002/app.52175.
40
TAO G, CHEN Y M, MU J S, et al. Exploring the entangled state and molecular weight of UHMWPE on the microstructure and mechanical properties of HDPE/UHMWPE blends[J]. Journal of Applied Polymer Science, 2021, 138(30): 10.1002/APP.50741.
41
YIN X C, LI Y, HE G J, et al. Dispersion of CNTs in UHMWPE by melt mixing dominated by elongation stress[J]. Polymer International, 2018, 67(5): 577-587.
42
FENG Y H, GAO Y, CHEN J J, et al. Properties of compression molded ultra-high molecular weight polyethylene products pretreated by eccentric rotor extrusion[J]. Polymer International, 2019, 68(5): 862-870.
43
冯彦洪,王瑞松,江翎雯,等.不同流场对聚乙烯蜡/UHMWPE体系结构与性能的影响[J].塑料工业,2021,49(8):66-71.
44
冯彦洪,江翎雯,张桂珍.超高分子量聚乙烯分子链缠结调控技术研究进展[J].高分子通报,2022,6:13-21.
45
KELLETT B J, LANGE F F. Thermodynamics of densification: I, sintering of simple particle arrays, equilibrium configurations, pore stability, and shrinkage[J]. Journal of the American Ceramic Society, 1989, 72(5): 725-734.
46
王瑞松.超高分子量聚乙烯中空制件脉振模压成型及性能研究[D].广州:华南理工大学,2021.
47
YILMAZ G, USLU E. A new approach for high-quality production of UHMWPE by applying powder vibration densification before sintering[J]. Powder Technology, 2023, DOI: 10.1016/j.powtec.2023.118741.
48
冯彦洪,瞿金平,殷小春,等.一种超高分子量聚合物异型制件成型方法及设备:CN107696378A[P]. 2018-02-16.
49
冯彦洪,王瑞松,胡松喜,等.一种取向可控的超高分子量聚合物异型制件成型设备:CN113021725A[P]. 2021-06-25.
50
胡松喜,李璞,杨森泉.成型温度对脉振模压成型自增强UHMWPE结构与性能的影响[J].高分子材料科学与工程,2023,39(4):101-109.
51
HU S X, FENG Y H, YIN X C, et al. Structure and properties of UHMWPE products strengthened and toughened by pulse vibration molding at low temperature[J]. Polymer, 2021, DOI:10.1016/j.polymer.2021.124026.
52
胡松喜,冯彦洪,殷小春,等.脉振频率对脉振模压成型UHMWPE结构与性能的影响[J].华南理工大学学报:自然科学版,2022,50(8):144-154.

Comments

PDF(962 KB)

Accesses

Citation

Detail

Sections
Recommended

/