Preparation of Magnesium Carbonate Trihydrate Fibers and Their Application in EVA

YAO Ming-qi, RONG Jing, DUAN Si-yu, CAO Da-li

PDF(1730 KB)
PDF(1730 KB)
Plastics Science and Technology ›› 2024, Vol. 52 ›› Issue (09) : 73-78. DOI: 10.15925/j.cnki.issn1005-3360.2024.09.013
Processing and Application

Preparation of Magnesium Carbonate Trihydrate Fibers and Their Application in EVA

Author information +
History +

Abstract

Magnesium carbonate trihydrate fibers were synthesized by co-precipitation method using magnesium sulfate heptahydrate (MgSO4·7H2O) and potassium carbonate (K2CO3) as raw materials and sodium dodecylbenzene sulfonate (SDBS) as structural guiding agent. EVA composites were prepared by melt blending using silane-modified magnesium carbonate trihydrate fiber as a flame retardant. The effects of modified magnesium carbonate trihydrate fibers on the mechanical properties, thermal stability and flame retardancy of EVA composites were investigated by means of a universal testing machine, a limiting oxygen index meter (LOI), a thermogravimetric analyzer (TG), and a cone calorimeter (CCT). The results show that at 40 ℃, the stirring rate is 350 r/min, the molar ratio of MgSO4·7H2O to K2CO3 is 3∶1, and the addition amount of SDBS is 3% of the theoretical production fiber mass, MgCO3·3H2O fibers with good dispersibility can be prepared. The mechanical properties of EVA can be significantly improved by MgCO3·3H2O fibers modified by silane coupling agent, and the tensile strength of the composites is increased to 13.7 MPa and the elongation at break is increased to 176% when the addition amount is 40%. The heat release rate and smoke release rate are greatly reduced to 231 kW/m2 and 0.029 m2/s, respectively.

Key words

Magnesium carbonate trihydrate fiber / Surface modification / Ethylene vinyl acetate copolymer / Mechanical properties / Flame retardancy

Cite this article

Download Citations
YAO Ming-qi , RONG Jing , DUAN Si-yu , et al. Preparation of Magnesium Carbonate Trihydrate Fibers and Their Application in EVA. Plastics Science and Technology. 2024, 52(09): 73-78 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.09.013

References

1
甄建斌,伊佳佳,姬占有,等.EPDM/EVA共混发泡胶料的制备和性能研究[J].橡胶工业,2022,69(11):812-821.
2
TAKIDIS G, BIKIARIS D N, PAPAGEORGIOU G Z, et al. Compatibility of low-density polyethylenepoly (ethylene‐co‐vinyl acetate) binary blends prepared by melt mixing[J]. Journal of Applied Polymer Science, 2003, 90(3): 841-852.
3
韩源,韩嘉璐,王建军,等.硼酸锌协同膨胀型阻燃剂改性电缆用EVA复合材料的制备与性能[J].塑料科技,2023,51(1):52-55.
4
夏英,李姿潼,张桂霞,等.无卤阻燃EVA复合材料研究进展[J].塑料科技,2008(9):78-82.
5
YUAN B H, BAO C L, QIAN X D, et al. Synergetic dispersion effect of graphene nanohybrid on the thermal stability and mechanical properties of ethylene vinyl acetate copolymer nanocomposite[J]. Industrial & Engineering Chemistry Research, 2014, 53(3): 1143-1149.
6
ZHANG L J. Usage and maintenance of medical apparatus and instruments of human factors research[J]. Applied Mechanics and Materials, 2014, 651-653: 1691-1694.
7
GE Z H, LI X Q, SI D G, et al. Research on the preparation and properties of biodegradable wood-plastic composites[J]. IOP Conference Series: Materials Science and Engineering, 2020, DOI: 10.1088/1757-899X/892/1/012018.
8
AGHJEH M R, NAZARI M, KHONAKDAR H A, et al. In depth analysis of micro-mechanism of mechanical property alternations in PLA/EVA/clay nanocomposites: A combined theoretical and experimental approach[J]. Materials & Design, 2015, 88: 1277-1289.
9
闫浩.改性活性炭增强EVA塑料阻燃性能研究[J].塑料科技,2021,49(4):43-48.
10
LOU F P, WU K, WANG Q, et al. Improved flame-retardant and ceramifiable properties of EVA composites by combination of ammonium polyphosphate and aluminum hydroxide[J]. Polymers, 2019, DOI: 10.3390/polym11010125.
11
李嘉玮,王新龙.氢氧化铝阻燃复合材料的性能[J].塑料,2017,46(1):29-32.
12
李占冲,孟凡涛,魏春成,等.无卤阻燃聚乙烯的研究进展[J].塑料工业,2022,50(1):1-5, 19.
13
WANG X, KALALI E N, WAN J T, et al. Carbon-family materials for flame retardant polymeric materials[J]. Progress in Polymer Science, 2017, 69: 22-46.
14
HANU L G, SIMON G P, MANSOURI J, et al. Development of polymer-ceramic composites for improved fire resistance[J]. Journal of Materials Processing Technology, 2004, 153-154: 401-407.
15
HANU L G, SIMON G P, CHENG Y B. Preferential orientation of muscovite in ceramifiable silicone composites[J]. Materials Science and Engineering A, 2005, 398 (1-2): 180-187.
16
王伟,汪艳,张俊,等.碱式碳酸镁阻燃LDPE/EVA的性能研究[C]//中国无机盐工业协会镁化合物分会.2017年中国无机盐工业协会镁化合物分会年会暨镁化合物行业发展论坛.正定,2017.
17
董文涛.无水碳酸镁制备工艺研究[D].石家庄:河北科技大学,2022.
18
沈兴,王明文,周花蕾,等.青海盐湖水氯镁石制备镁盐无机晶须与新型无水碳酸镁晶须阻燃剂[C]//中国阻燃学会.西宁:2010年中国阻燃学术会议论文集,2010.
19
阮恒,黄尚顺,桑艳霞,等.碳酸镁晶须的反向沉淀法制备及其阻燃性能[J].广西科学,2016,23(3):255-260.
20
张果泰,海春喜,周园.碱式碳酸镁的制备方法及应用现状[J].盐湖研究,2022,30(3):131-138.
21
赵航毅,王余莲,时天骄,等.氯化铵辅助三水碳酸镁水热法合成无水碳酸镁及其形成机理[J].中国粉体技术,2022,28(6):49-57.
22
苟生莲.抗菌性纳米氧化镁的制备与表征[D].青海:中国科学院大学(中国科学院青海盐湖研究所),2020.
23
王余莲,印万忠,张夏翔,等.大长径比三水碳酸镁晶须的制备及晶体生长机理[J].硅酸盐学报,2018,46(7):938-945.
24
李炜,王路明,殷文,等.无机阻燃剂氢氧化镁的表面改性及机理研究[J].无机盐工业,2009,41(1):29-31, 47.
25
李艳玲,毛如增,吴立军,等.超细氢氧化镁阻粉体表面改性研究[J].中国粉体技术,2007(1):29-32.
26
刘伟强,马亚丽,衣思敏,等.氢氧化镁表面改性及在EVA中的应用[J].塑料工业,2023,51(7):107-114.
27
张陶忠,陈晓龙,郝晓宇,等.矿物填料填充PP复合材料的制备及性能研究[J].塑料科技,2022,50(4):19-22.
28
陈镜融,谷晓昱,孙军,等.氢氧化铝/氢氧化镁复配提高乙烯-醋酸乙烯共聚物阻燃性能[J].中国塑料,2017,31(9):68-72.
29
胡红伟,李建喜.海泡石与硼酸锌二元阻燃体系对EVA复合材料的阻燃和抑烟性能的研究[J]塑料科技,2022,50(11):87-92.

Comments

PDF(1730 KB)

Accesses

Citation

Detail

Sections
Recommended

/