Study on Preparation and Absorption Properties of Fiber-Coated Yarn Modified PVA-Based Aerogel

QIN Ai-wen, WANG Jia-le, ZHI Hao-ran, YAN Yu-hang, GUO Yang, ZHU Hong-li, LI Jun

PDF(3473 KB)
PDF(3473 KB)
Plastics Science and Technology ›› 2024, Vol. 52 ›› Issue (09) : 38-44. DOI: 10.15925/j.cnki.issn1005-3360.2024.09.007
Theory and Research

Study on Preparation and Absorption Properties of Fiber-Coated Yarn Modified PVA-Based Aerogel

Author information +
History +

Abstract

SiO2/PVDF and PAN/PVDF fibers were prepared by electrospinning instrument with wet spinning polyvinylidene fluoride (PVDF) fiber as the core layer and ethyl orthosilicate and polyacrylonitrile (PAN) as the skin layer, and the fiber-coated yarn was carbonized, and then added to polyvinyl alcohol (PVA) to prepare aerogel by freeze-drying. The effects of two kinds of fiber-coated yarns on compressibility properties, thermal insulation properties and electromagnetic wave absorption properties of PVA-based aerogels were studied. The results show that the addition of fiber-coated yarn can enhance the compression resistance of PVA-based aerogels, and the aerogels with PAN/PVDF coated yarns have the best compression resistance, with a compressive stress of 112.3 kPa, which is 45% higher than that of unmodified aerogels, and recovery rate can still be maintained by more than 90% after five rounds of compression rebound experiments. In addition, when the thickness of the aerogel modified by PAN/PVDF coated yarn is 1 mm, the effective absorption bandwidth is 1.08 GHz, and the maximum absorption peak reaches -40.4 dB, showing excellent electromagnetic wave absorption performance.

Key words

Aerogel / Fiber-coated yarn / Electromagnetic wave absorption / Compression performance

Cite this article

Download Citations
QIN Ai-wen , WANG Jia-le , ZHI Hao-ran , et al . Study on Preparation and Absorption Properties of Fiber-Coated Yarn Modified PVA-Based Aerogel. Plastics Science and Technology. 2024, 52(09): 38-44 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.09.007

References

1
DOU L, ZHANG X X, SHAN H T, et al. Interweaved cellular structured ceramic nanofibrous aerogels with superior bendability and compressibility[J]. Advanced Functional Materials, 2020, DOI: 10.1002/adfm.202005928.
2
ABDALLA I, SALIM A, ZHU M, et al. Light and flexible composite nanofibrous membranes for high-efficiency electromagnetic absorption in a broad frequency[J]. ACS Applied Materials & Interfaces, 2018, 10 (51): 44561-44569.
3
LI C B, LI Y J, ZHAO Q, et al. Electromagnetic interference shielding of graphene aerogel with layered microstructure fabricated via mechanical compression[J]. ACS Applied Materials & Interfaces, 2020, 12 (27): 30686-30694.
4
HAN M, YIN X, HANTANASIRISAKUL K, et al. Anisotropic mxene aerogels with a mechanically tunable ratio of electromagnetic wave reflection to absorption[J]. Advanced Optical Materials, 2019, DOI: 10.1002/adom.201900267.
5
CHERAGHI BIDSORKHI H, D'ALOIA A G, TAMBURRANO A, et al. 3d porous graphene-based aerogel for electromagnetic applications[J]. Scientific reports, 2019, DOI: 10.1038/s41598-019-52230-5.
6
SHI K Z, LI J, WU Y, et al. Lightweight composite microwave absorbing materials based on graphene aerogels with honeycomb structure[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2019, DOI: 10.1002/pssr.201900179.
7
LI Y, LIU X F, NIE X Y, et al. Multifunctional organic-inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material[J]. Advanced Functional Materials, 2019, DOI: 10.1002/adfm.201807624.
8
LIU J, ZHANG H B, XIE X, et al. Multifunctional, superelastic, and lightweight mxene/polyimide aerogels[J]. Small, 2018, DOI: 10.1002/smll.201802479.
9
郭齐泰,李萧,唐帅,等.气凝胶材料的制备及其在塑料中的应用研究进展[J].塑料科技,2024,52(1):124-128.
10
DOROFEEV I O, SUSLYAEV V I, MOSEENKOV S I, et al. Interaction of multiwalled carbon nanotube aerogels with quasi‐optical terahertz beams[J]. Physica Status Solidi (b), 2019, DOI: 10.1002/pssb.201900251.
11
郑银松,汪艳.热塑性聚氨酯吸波复合材料的3D打印研究[J].塑料科技,2022,50(7):63-66.
12
WANG C Z, LI J, GUO S Y. High-performance electromagnetic wave absorption by designing the multilayer graphene/thermoplastic polyurethane porous composites with gradient foam ratio structure[J]. Composites Part A: Applied Science and Manufacturing, 2019, DOI: 10.1016/j.compositesa.2019.105522.
13
CHENG Y, ZHAO H Q, LV H L, et al. Lightweight and flexible cotton aerogel composites for electromagnetic absorption and shielding applications[J]. Advanced Electronic Materials, 2019, DOI: 10.1002/aelm.201900796.
14
CAO M S, WANG X X, ZHANG M, et al. Electromagnetic response and energy conversion for functions and devices in low-dimensional materials[J]. Advanced Functional Materials, 2019, DOI: 10.1002/adfm.201807398.
15
ABDALLA I, ELHASSAN A, YU J, et al. A hybrid comprised of porous carbon nanofibers and RGO for efficient electromagnetic wave absorption[J]. Carbon, 2020, 157: 703-713.
16
姜雨良.静电纺丝技术制备聚丙烯腈碳纳米纤维及其吸波性能研究[D].济南:山东大学,2020.
17
叶伟,孙雷,余进,等.磁性颗粒/碳纤维轻质柔软复合材料制备及吸波性能[J].纺织学报,2019,40(1):97-102.
18
XIAO F F, SUN H B, LI J, et al. Electrospinning preparation and electromagnetic wave absorption properties of SiCN fibers[J]. Ceramics International. 2020, 46(8): 12773-12781.
19
KUANG J L, XIAO T, HOU X J, et al. Microwave synthesis of worm-like SiC nanowires for thin electromagnetic wave absorbing materials[J]. Ceramics International. 2019, 45(9): 11660-11667.
20
LIU Y, FENG Y R, GONG H Y, et al. Microwave absorbing performance of polymer-derived SiCN(Ni) ceramics prepared from different nickel sources[J]. Journal of Alloys and Compounds, 2018, 749: 620-627.
21
DONG Y P, FAN X M, WEI H J, et al. Enhanced electromagnetic wave absorption properties of a novel SiC nanowires reinforced SiO2/3Al2O3·2SiO2 porous ceramic[J]. Ceramics International, 2020, 46(14): 22474-22481.
22
侯东,聂京凯,崔建业,等.碳化硅/氟橡胶复合材料的制备与性能研究[J].橡胶工业,2023,70(1):26-30.
23
张露莎.耐高温SiBNC陶瓷气凝胶的制备及其吸波性能研究[D].上海:东华大学,2021.
24
APOSTOLOPOULOU‐KALKAVOURA V, MUNIER P, BERGSTR M L. Thermally insulating nanocellulose-based materials[J]. Advanced Materials, 2020, DOI: 10.1002/adma.202001839.
25
MEI H, LU M Y, ZHOU S X, et al. Enhanced impact resistance and electromagnetic interference shielding of carbon nanotubes films composites[J]. Journal of Applied Polymer Science, 2020, DOI: 10.1002/app.50033.
26
HEMATH M, MAVINKERE R S, KUSHVAHA V, et al. A comprehensive review on mechanical, electromagnetic radiation shielding, and thermal conductivity of fibers/inorganic fillers reinforced hybrid polymer composites[J]. Polymer Composites, 2020, 41(10): 3940-3965.
27
章玲.纤维增强聚酰亚胺复合气凝胶隔热/吸波性能研究[D].上海:东华大学,2021.
28
李俊,齐鲁,李慧皓.FeCl3/共轭席夫碱的制备及介电性能分析[J].无机化学学报,2016,32(1):96-102.
29
叶伟,余进,龙啸云,等.丝瓜络基碳材料的电磁波吸收性能[J].纺织学报,2022,43(4):33-39.
30
SONG Q, YE F, KONG L, et al. Graphene and mxene nanomaterials: Toward high-performance electromagnetic wave absorption in gigahertz band range[J]. Advanced Functional Materials, 2020, DOI: 10.1002/adfm.202000475.
31
李忻超,魏赛男,刘瑞雪.等 .铁氧体/石墨烯复合吸波织物的制备及性能[J].塑料科技,2024,52(2):54-58.

Comments

PDF(3473 KB)

Accesses

Citation

Detail

Sections
Recommended

/