Preparation and Property study of Polyurethane Reticulated Foam Modified by Macromolecular Hindered Phenol Functionalized Carbon Nanotubes

WANG Rui-xin, YANG Rui-ning, SHANG Lei, ZHANG Bo

PDF(2460 KB)
PDF(2460 KB)
Plastics Science and Technology ›› 2024, Vol. 52 ›› Issue (09) : 32-37. DOI: 10.15925/j.cnki.issn1005-3360.2024.09.006
Theory and Research

Preparation and Property study of Polyurethane Reticulated Foam Modified by Macromolecular Hindered Phenol Functionalized Carbon Nanotubes

Author information +
History +

Abstract

Poly(2-hydroxyethyl methacrylate) (PHEMA) was grafted onto γ-aminopropyl trimethoxysilane (APTMS) functionalized carbon nanotubes (CNTs) by surface-initiated oxidation-reduction polymerization. Then 3,5-di-tert-butyl-4-hydroxybenzoic acid (CNTs-PHEMA-g-AO-e) was grafted by esterification. The effects of CNTs-PHEMA-g-AO-e on the apparent density, mechanical properties, antistatic and aging resistance of polyurethane (PU) reticulated foam were studied in detail. The results showed that functionalized CNTs with grafting rate of AO-e of 8% were successfully prepared by surface-initiated oxidation-reduction polymerization and esterification. With the increase of CNTs-PHEMA-g-AO-e content, the apparent density was gradually increased before and after netting, the density difference was decreased first and then increased, the tensile strength and compressive strength was first increased and then decreased, the compression set was first decreased and then increased, and the elongation at break decreased obviously. When the content of CNTs-PHEMA-g-AO-e was 4%, the tensile strength of PU reticulated foam was 262.6 kPa, the elongation at break was 122.7%, the compressive strength at 65% set deformation was 8.6 kPa and the compression set was 15.6%. Compared with PU network foam directly added with AO-e, the antistatic property was improved, the volume resistivity was decreased by 10 orders of magnitude, and the aging resistance was significantly enhanced in the presence of CNTs-PHEMA-g-AO-e.

Key words

Carbon nanotube / Polyurethane reticulated foam / Macromolecular antioxidant / Antistatic performance / Aging resistance

Cite this article

Download Citations
WANG Rui-xin , YANG Rui-ning , SHANG Lei , et al. Preparation and Property study of Polyurethane Reticulated Foam Modified by Macromolecular Hindered Phenol Functionalized Carbon Nanotubes. Plastics Science and Technology. 2024, 52(09): 32-37 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.09.006

References

1
朱日兴,吴国洪.运输类飞机燃油箱防爆适航审定技术分析[J].民航学报,2022,6(3):85-87, 74.
2
许睿轩,张旭,赵俊青,等.民用飞机燃油易燃性及其防爆技术研究进展[J].科技视界,2017(5):77.
3
杨真理,鲁长波,周友杰,等.阻隔防爆材料应用与研究进展[J].安全与环境工程,2016,23(2):130-134, 142.
4
ZHOU Y J, LU C B, XIONG C H, et al. Study on properties of spherical non-metallic explosion suppression materials[J]. Materials Science Forum, 2017, 889: 25-29.
5
吴洁,鞠伟轶,张鑫,等.新型聚丙烯阻隔防爆材料与M45甲醇汽油相容性影响[J].常州大学学报:自然科学版,2022,34(2):87-92.
6
王希,董全霄,程冠之,等.阻尼聚氨酯材料改性进展[J].塑料,2022,51(4):125-130.
7
马萍萍.聚氨酯材料的应用研究进展[J].化工设计通讯,2021,47(1):36-37.
8
叶丞.一步法制备网状聚氨酯软泡及性能研究[J].聚氨酯工业,2017,32(1):33-36.
9
孙俊杰,杨素洁,黄新杰,等.阻燃硬质聚氨酯泡沫的进展[J].塑料,2023,52(5):109-117.
10
辛成,陆少锋,申天伟,等.界面聚合网状壳体聚氨酯相变微胶囊的制备与性能[J].精细化工,2018,35(7):1121-1125.
11
杨智慧,崔香.环境友好型耐水解水性聚氨酯的制备与表征[J].塑料工业,2022,50(6):125-130, 169.
12
张峰,吴斌.可控降解聚氨酯弹性体的合成和水解性能研究[J].聚氨酯工业,2022,37(2):27-30.
13
刘兆阳,房玉俊,韩胜奎,等.持久抗静电聚氨酯弹性体的制备及性能研究[J].化学推进剂与高分子材料,2023,21(1):54-57.
14
黄文斌,孙炎,吴明明,等.聚氨酯高温老化性能研究及寿命评估[J].聚氨酯工业,2022,37(5):43-46.
15
崔永红,马睿,赵天波,等.改性端羟基聚丁二烯-三异氰酸酯基网状聚氨酯合成及性能[J].工程塑料应用,2021,49(5):1-7.
16
刘庆坤,丛川波,孟晓宇,等.反应型大分子抗氧剂的合成及其在EPDM中的抗氧化性能[J].中国塑料,2023,37(1):99-105.
17
李晨阳,公维光,孟鑫,等.抗氧剂耐迁移化技术的研究应用进展[J].中国塑料,2020,34(12):92-102.
18
冯建湘,吴任钊,何雨霖,等.新型抗氧剂研究进展[J].包装学报,2021,13(3):71-82.
19
NAVIDFAR A, SANCAK A, YILDIRIM K B, et al. A study on polyurethane hybrid nanocomposite foams reinforced with multiwalled carbon nanotubes and silica nanoparticles[J]. Polymer-Plastics Technology and Engineering, 2017, 57 (14): 1463-1473.
20
沈羽,王西建,周永情.纳米二氧化硅粒子填充聚氨酯泡沫材料的制备及其阻尼性能分析[J].塑料科技,2020,48(6):7-10.
21
熊亚,江猛,李宜航,等.白炭黑负载抗氧剂在天然橡胶中的分散性及防老化作用[J].材料导报,2021,35(6):6200-6205, 141.
22
FU Y, YANG C, LVOV Y M, et al. Antioxidant sustained release from carbon nanotubes for preparation of highly aging resistant rubber [J]. Chemical Engineering Journal, 2017, 328: 536-545.
23
马连湘,程凯,何燕.HDPE/CNTs复合材料的制备及性能研究[J].塑料科技,2017,45(4):25-30.
24
常金燕,邵会菊,刁延芳,等.功能化碳纳米管/SMANa/聚醚砜导电分离膜的制备及性能[J].塑料科技,2022,50(11):41-47.
25
A穆柄臻,陈海龙,何燕.碳纳米管/橡胶复合材料的制备方法及性能研究现状和进展[J].橡胶工业,2022,69(10):790-797.
26
ARSLANTUNALI D, BUDAK G, HASIRCI V. Multiwalled CNT-pHEMA composite conduit for peripheral nerve repair[J]. Journal of Biomedical Materials Research, 2014, 120(3): 828-841.
27
法厚健,王建康,柳晶敏.碳纤维含量对热塑性聚氨酯弹性体复合材料发泡性能的影响[J].塑料科技,2022,50(6):18-22.
28
李莹,张晨,杜中杰.改性碳纳米管对聚氨酯发泡行为的影响[J].塑料,2019,48(2):1-4.
29
侯明月,李昂,邹威,等.氨基改性碳纳米管的制备及对聚氨酯泡沫材料的影响[J].高分子材料科学与工程,2016,32(1):179-183, 190.
30
陶帅,秦贤玉,刘锦春.抗静电聚醚型聚氨酯弹性体的合成及性能研究[J].当代化工,2018,47(10):2101-2104.
31
DING P, XIE X J, HE J W, et al. Fabrication of a novel chitosan-based macromolecular antioxidant and its effects on the anti-aging properties of styrene-butadiene rubber/silica composites[J]. Vinyl and Additive Technology, 2024, 30 (1): 89-101.

Comments

PDF(2460 KB)

Accesses

Citation

Detail

Sections
Recommended

/