
Research on Low-Temperature Mechanical Properties of Acrylate Polymer Blended with Polyvinyl Chloride Resin (ABR) Pipes
HU Shao-wei, GUO Ze-yuan, JIN Wen-can, TANG Peng-fei, YE Yu-xiao, PAN Fu-qu
Research on Low-Temperature Mechanical Properties of Acrylate Polymer Blended with Polyvinyl Chloride Resin (ABR) Pipes
To investigate the mechanical and operational properties of acrylate polymer blended with polyvinyl chloride resin (ABR) pipes in low-temperature environments, the study conducted compression and tensile performance tests on ABR, high performance unplasticized polyvinyl chloride pipe (PVC-UH), and unplasticized polyvinyl chloride (PVC-U) pipes of PN1.0 MPa specification under various temperature conditions. An experimental study on the tightness under internal pressure and angular deflection performance of the three types of pipes in a 5 ℃ environment was also carried out. Based on test and experimental results, a numerical simulation study of the deflection angle sealing performance of ABR pipes at low temperatures was conducted. The results indicate that at low-temperature conditions, the mechanical performance of ABR pipes surpasses that of PVC-UH and PVC-U pipes, the incorporation of acrylate polymer (ACR) modifier significantly enhances the compression, tensile, and leak resistance properties of ABR pipes at low-temperature conditions. At 5 ℃, the yield strength of ABR pipe material is 57.1 MPa, the elastic modulus is 3 679.3 MPa, the elongation at break is 71.5%, the ring stiffness is 22.67 kN/m2, and the ring flexibility is excellent. Simultaneously, in a 5 ℃ environment, the sealing integrity of ABR pipe joints remains intact under the influence of 0.4 MPa static hydraulic pressure and an 8° deflection angle displacement.
ABR pipes / Temperature / Mechanical properties / Leak tightness / Numerical simulation
1 |
刘威,黄淳捷.地面不均匀沉降下埋地管道响应数值分析[J].同济大学学报:自然科学版,2022,50(3):370-377.
|
2 |
马小明,康逊.埋地管道不均匀沉降的应力及影响因素分析[J].重庆大学学报,2017,40(8):45-52.
|
3 |
张玉,侯正森,李大勇,等.地基沉降作用下管道安全性测试平台设计与研制[J].实验技术与管理,2021,38(7):135-140.
|
4 |
詹迪,马小明.非均匀沉降下沿海埋地天然气管道应力有限元分析与预测[J/OL].热加工工艺,1-5[2024-02-13].
|
5 |
季蓓蕾,刘啸奔,江金旭,等.软土沉降位移作用下大口径管道轴向应力状态研究[J].中国安全生产科学技术,2021,17(6):85-90.
|
6 |
郑志军,郑博士,马小明.土体不均匀沉降下越站管道应力有限元分析[J].化工设备与管道,2023,60(3):76-81.
|
7 |
|
8 |
武段旭,董琪,门玉明.浅埋PVC管道穿越挖填方场地时受力状态研究[J].铁道科学与工程学报,2017,14(10):2177-2184.
|
9 |
|
10 |
|
11 |
张玉,梁昊,林亮,等.不同沉降方式下埋地管道力学响应试验研究[J].岩土力学,2023,44(6):1645-1656.
|
12 |
巴振宁,王智恺,梁建文.温度和不均匀沉降耦合作用下埋地管道力学性能[J].油气储运,2018,37(10):1097-1103.
|
13 |
刘鹏,黄维和,李玉星,等.阶梯沉降条件下埋地钢管的力学响应规律[J].天然气工业,2023,43(12):110-120.
|
14 |
|
15 |
徐海翔,王永焕,林松涛.某核电工程大直径输水管道水密性能检测方法和检测装置研究[J].工业建筑,2011,41(S1):198-200.
|
16 |
|
17 |
唐鹏飞,胡少伟,刘国安,等.排水用PVC轴向中空壁管力学性能及结构优化分析[J/OL].工程科学与技术:1-11[2023-10-29].
|
18 |
朱瑞霞,甘露,武芷萱.几种常见给水PVC工程管道的对比分析[J].中国塑料,2021,35(3):50-58.
|
19 |
甄凤.阻燃耐高温PVC管材的制备及其应用研究[J].塑料科技,2023,51(3):59-62.
|
20 |
巨安奇,王娜,高玉铃,等.PVC/ABS共混物的热稳定性[J].高分子材料科学与工程,2009,25(6):74-77.
|
21 |
郭泽元,胡少伟,金文粲,等.PVC-U轴向中空壁管挤出成型工艺优化与数值模拟[J].塑料工业,2023,51(9):94-101.
|
22 |
承林,何志才,韦佳倩,等.PVC/EVA形状记忆管材的制备及性能研究[J].塑料工业,2018,46(7):155-158.
|
23 |
辛明亮,林华义,李茂东,等.聚氯乙烯管材研究进展及使用寿命评估[J].塑料科技,2015,43(8):95-98.
|
24 |
范英奎,朱瑞霞,彭金刚,等.PVC-UH管材壁厚对环向拉伸强度的影响[J].中国塑料,2019,33(8):38-43.
|
25 |
王原.CPVC稳定、流动、增韧、增强方面的研究[D].北京:北京化工大学,2018.
|
26 |
张周达.纳米碳酸钙填充型粉末橡胶复合粒子增韧聚氯乙烯[D].上海:华东理工大学,2012.
|
27 |
贾立蓉.超细全硫化粉末橡胶对硬质聚氯乙烯的改性研究[D].成都:四川大学,2004.
|
28 |
|
29 |
|
30 |
胡少伟,杨金辉.大口径高性能聚氯乙烯管道研发与工程安全保障技术[J].工程力学,2023,40(1):1-31.
|
/
〈 |
|
〉 |