Research Progress on Micromotors Capture Degradation of Microplastics

DAI Yun-peng, XIA Wen-jie, YU Jia-ming, WANG Jing, WANG Ying

PDF(937 KB)
PDF(937 KB)
Plastics Science and Technology ›› 2024, Vol. 52 ›› Issue (08) : 156-160. DOI: 10.15925/j.cnki.issn1005-3360.2024.08.030
Review

Research Progress on Micromotors Capture Degradation of Microplastics

Author information +
History +

Abstract

A brief description of the micromotors capture degradation of microplastics and other related fields are given, and the micromotors degradation of microplastics technology, which has been developing rapidly in recent years is introduced in detail, with a focus on the drive mode of micromotors and its application in the field of degradation of microplastics. Micromotors are widely used in environmental remediation due to their autonomous driving performance in the water environment. The research progress of micromotors driving mode and capturing degradation of microplastics in recent years is briefly summarized, with emphasis on the practical application of micromotors in capturing the degradation of microplastics in domestic and international research, and the differences in the removal effect of microplastics by different micromotors are discussed. Summarizing the research progress on microplastic degradation by micromotors provides scientific guidance for environmental protection and further promotes the application of micromotors in environmental pollution and other aspects. Finally, the challenges to be faced and future development direction for the capture of degraded microplastics by micromotors are analyzed.

Key words

Micromotors / Microplastics / Environmental remediation

Cite this article

Download Citations
DAI Yun-peng , XIA Wen-jie , YU Jia-ming , et al . Research Progress on Micromotors Capture Degradation of Microplastics. Plastics Science and Technology. 2024, 52(08): 156-160 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.08.030

References

1
BERGMANN M, TEKMAN M B, GUTOW L. Marine litter: Sea change for plastic pollution[J]. Nature, 2017, DOI: 10.1038/544297a.
2
BORRELLE S B, RINGMA J, LAW K L, et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution[J]. Science, 2020, 369(6510): 1515-1518.
3
ROCHMAN C M, HOELLEIN T. The global odyssey of plastic pollution[J]. Science, 2020, 368(6496): 1184-1185.
4
杜明月,张厚勇,谢璇,等.大气微塑料样品的采集、分析方法研究进展[J].塑料科技,2024,52(6):132-137.
5
李君薇.水体中微塑料的采集、分离及检测技术研究进展[J].塑料科技,2021,49(8):113-116.
6
THOMPSON R C, OLSEN Y, MITCHELL R P, et al. Lost at sea: Where is all the plastic?[J]. Science, 2004, DOI: 10.1126/science.1094559.
7
ZHANG L S, XIE Y S, ZHONG S, et al. Microplastics in freshwater and wild fishes from the Lijiang River in Guangxi, Southwest China[J]. Science of the Total Environment, 2021, DOI: 10.1016/j.scitotenv.2020.142428.
8
冯丹,谭艾娟,杨贵利.水体微塑料的收集、检测及处理技术[J].塑料科技,2022,50(4):123-126.
9
KUTRALAM-MUNIASAMY G, PÉREZ-GUEVARA F, ELIZALDE-MARTÍNEZ I, et al. Overview of microplastics pollution with heavy metals: Analytical methods, occurrence, transfer risks and call for standardization[J]. Journal of Hazardous Materials, 2021, DOI: 10.1016/j.jhazmat.2021.125755.
10
WANG J. Can man-made nanomachines compete with nature biomotors?[J]. ACS Nano, 2009, 3(1): 4-9.
11
LIANG C, ZHAN C, ZENG F, et al. Bilayer tubular micromotors for simultaneous environmental monitoring and remediation[J]. ACS Applied Materials & Interfaces, 2018, 10(41): 35099-35107.
12
WANG L, KAEPPLER A, Dieter F, et al. Photocatalytic TiO2 micromotors for removal of microplastics and suspended matter[J]. ACS Applied Materials & Interfaces, 2019, 11(36): 32937-32944.
13
YE H, WANG Y, LIU X J, et al. Magnetically steerable iron oxides-manganese dioxide core-shell micromotors for organic and microplastic removal[J]. Journal of Colloid and Interface Science, 2021, 588: 510-521.
14
PENG X, URSO M, KOLACKOVA M, et al. Biohybrid magnetically driven microrobots for sustainable removal of micro/nanoplastics from the aquatic environment[J]. Advanced Functional Materials, 2023, DOI: 10.1002/adfm.202307477.
15
FERNÁNDEZ‐MEDINA M, RAMOS‐DOCAMPO M A, HOVORKA O, et al. Recent advances in nano- and micromotors[J]. Advanced Functional Materials, 2020, DOI: 10.1002/adfm.201908283.
16
URSO M, IFFELSBERGER C, MAYORGA-MARTINEZ C C, et al. Nickel sulfide microrockets as self-propelled energy storage devices to power electronic circuits "on-demand"[J]. Small Methods, 2021, DOI: 10.1002/smtd.202100511.
17
NOURHANI A, KARSHALEV E, SOTO F, et al. Multigear bubble propulsion of transient micromotors[J]. Research, 2020, DOI: 10.34133/2020/7823615.
18
LIU K, OU J F, WANG S H, et al. Magnesium-based micromotors for enhanced active and synergistic hydrogen chemotherapy[J]. Applied Materials Today, 2020, DOI: 10.1016/j.apmt.2020.100694.
19
YANG J, LIU Y, LI J, et al. γ-Fe2O3@Ag-mSiO2-NH2 magnetic Janus micromotor for active water remediation[J]. Applied Materials Today, 2021, DOI: 10.1016/j.apmt.2021.101190.
20
ZHANG Q L, DONG R F, WU Y F, et al. Light-driven Au-WO3@C Janus micromotors for rapid photodegradation of dye pollutants[J]. ACS Applied Materials & Interfaces, 2017, 9(5): 4674-4683.
21
VILLA K, PUMERA M. Fuel-free light-driven micro/nanomachines: Artificial active matter mimicking nature[J]. Chemical Society Reviews, 2019, 48(19): 4966-4978.
22
DONG R F, ZHANG Q L, GAO W, et al. Highly efficient light-driven TiO2-Au Janus micromotors[J]. ACS Nano, 2016, 10(1): 839-844.
23
DONG R F, HU Y, WU Y F, et al. Visible-light-driven BiOI-based Janus micromotor in pure water[J]. Journal of the American Chemical Society, 2017, 139(5): 1722-1725.
24
URSO M, PUMERA M. Nano/microplastics capture and degradation by autonomous nano/microrobots: A perspective[J]. Advanced Functional Materials, 2022, DOI: 10.1002/adfm.202112120.
25
CHEN X, HOOP M, MUSHTAQ F, et al. Recent developments in magnetically driven micro- and nanorobots[J]. Applied Materials Today, 2017, 9: 37-48.
26
ZHOU H, MAYORGA-MARTINEZ C C, PANÉ S, et al. Magnetically driven micro and nanorobots[J]. Chemical Reviews, 2021, 121(8): 4999-5041.
27
LIN Z H, FAN X J, SUN M M, et al. Magnetically actuated peanut colloid motors for cell manipulation and patterning[J]. ACS Nano, 2018, 12(3): 2539-2545.
28
WANG X, CHEN X, ALCÂNTARA C C J, et al. MOFBOTS: Metal-organic-framework-based biomedical microrobots[J]. Advanced Materials, 2019, DOI: 10.1002/adma.201901592.
29
JI F T, LI T L, YU S M, et al. Propulsion gait analysis and fluidic trapping of swinging flexible nanomotors[J]. ACS Nano, 2021, 15(3): 5118-5128.
30
USSIA M, URSO M, KRATOCHVILOVA M, et al. Magnetically driven self-degrading zinc-containing cystine microrobots for treatment of prostate cancer[J]. Small, 2023, DOI: 10.1002/smll.202208259.
31
GEYER R, JAMBECK J R, LAW K L. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017, DOI: 10.1126/sciadv.1700782.
32
王成,李哲,魏健,等.水中微塑料来源、生态毒理效应及处理技术研究进展[J].环境工程技术学报,2023,13(5):1883-1892.
33
钱亚茹,石磊磊,沈茜,等.淡水环境中微塑料污染及毒性效应研究进展[J].环境工程技术学报,2022,12(4):1096-1104.
34
SCHWABL P, KÖPPEL S, KÖNIGSHOFER P, et al. Detection of various microplastics in human stool: A prospective case series[J]. Annals of Internal Medicine, 2019, 171(7): 453-457.
35
COX K D, COVERNTON G A, DAVIES H L, et al. Human consumption of microplastics[J]. Environmental Science & Technology, 2019, 53(12): 7068-7074.
36
杨敏,王莹,陈蕾,等.水中微塑料污染及转化去除的研究进展[J].中国塑料,2023,37(2):90-100.
37
包振宗,侯艳艳.环境中微塑料的老化特性及对污染物吸附影响的研究进展[J].塑料科技,2023,51(10):102-106.
38
URSO M, USSIA M, PUMERA M. Smart micro- and nanorobots for water purification[J]. Nature Reviews Bioengineering, 2023, 1(4): 236-251.
39
URSO M, USSIA M, PUMERA M. Breaking polymer chains with self-propelled light-controlled navigable hematite microrobots[J]. Advanced Functional Materials, 2021, DOI: 10.1002/adfm.202101510.
40
YUAN K S, ASUNCIÓN-NADAL V D L, JURADO-SÁNCHEZ B, et al. 2D Nanomaterials wrapped Janus micromotors with built-in multiengines for bubble, magnetic, and light driven propulsion[J]. Chemistry of Materials, 2020, 32(5): 1983-1992.
41
LOHAUS C, KLEIN A, JAEGERMANN W. Limitation of Fermi level shifts by polaron defect states in hematite photoelectrodes[J]. Nature Communications, 2018, DOI: 10.1038/s41467-018-06838-2.
42
DIXIT F, ZIMMERMANN K, DUTTA R, et al. Application of MXenes for water treatment and energy-efficient desalination: A review[J]. Journal of Hazardous Materials, 2022, DOI: 10.1016/j.jhazmat.2021.127050.
43
URSO M, USSIA M, NOVOTNÝ F, et al. Trapping and detecting nanoplastics by MXene-derived oxide microrobots[J]. Nature Communications, 2022, DOI: 10.1038/s41467-022-31161-2.
44
SARCLETTI M, PARK H, WIRTH J, et al. The remediation of nano-/microplastics from water[J]. Materials Today, 2021, 48: 38-46.
45
BELADI-MOUSAVI S M, HERMANOVÁ S, YING Y L, et al. A maze in plastic wastes: Autonomous motile photocatalytic microrobots against microplastics[J]. ACS Applied Materials & Interfaces, 2021, 13(21): 25102-25110.
46
LIU X T, GU S N, ZHAO Y J, et al. BiVO4, Bi2WO6 and Bi2MoO6 photocatalysis: A brief review[J]. Journal of Materials Science & Technology, 2020, 56: 45-68.
47
XU Q X, HUANG Q S, LUO T Y, et al. Coagulation removal and photocatalytic degradation of microplastics in urban waters[J]. Chemical Engineering Journal, 2021, DOI: 10.1016/j.cej.2021.129123.
48
SHARMA S, BASU S, SHETTI N P, et al. Microplastics in the environment: Occurrence, perils, and eradication[J]. Chemical Engineering Journal, 2020, DOI: 10.1016/j.cej.2020.127317.
49
李瑞,李宁,梁澜,等.水环境中微塑料去除技术的研究进展[J].水处理技术,2022,48(2):1-5, 12.
50
KHAIRUDIN K, BAKAR N F A, OSMAN M S. Magnetically recyclable flake-like BiOI-Fe3O4 microswimmers for fast and efficient degradation of microplastics[J]. Journal of Environmental Chemical Engineering, 2022, DOI: 10.1016/j.jece.2022.108275.
51
ZHAO X, LI Z W, CHEN Y, et al. Solid-phase photocatalytic degradation of polyethylene plastic under UV and solar light irradiation[J]. Journal of Molecular Catalysis A: Chemical, 2006, 268(1): 101-106.
52
CAI L Q, WANG J D, PENG J P, et al. Observation of the degradation of three types of plastic pellets exposed to UV irradiation in three different environments[J]. Science of the Total Environment, 2018, 628(1): 740-747.
53
ZHOU H, MAYORGA-MARTINEZ C C, PUMERA M. Microplastic removal and degradation by mussel-inspired adhesive magnetic/enzymatic microrobots[J]. Small Methods, 2021, DOI: 10.1002/smtd.202100230.
54
TANG K H D, LOCK S S M, YAP P S, et al. Immobilized enzyme/microorganism complexes for degradation of microplastics: A review of recent advances, feasibility and future prospects[J]. Science of The Total Environment, 2022, DOI: 10.1016/j.scitotenv.2022.154868.
55
OTHMAN A R, ABUHASAN H, MUHAMAD M H, et al. Microbial degradation of microplastics by enzymatic processes: A review[J]. Environmental Chemistry Letters, 2021, 19(4): 3057-3073.
56
金琰,蔡凡凡,王立功,等.生物可降解塑料在不同环境条件下的降解研究进展[J].生物工程学报,2022,38(5):1784-1808.
57
GIROTO J A, TEIXEIRA A C S C, NASCIMENTO C A O, et al. Degradation of Poly(ethylene glycol) in Aqueous Solution by Photo-Fenton and H2O2/UV Processes[J]. Industrial & Engineering Chemistry Research, 2010, 49(7): 3200-3206.
58
VIJAYALAKSHMI S P, MADRAS G. Photocatalytic degradation of poly(ethylene oxide) and polyacrylamide[J]. Journal of Applied Polymer Science, 2006, 100(5): 3997-4003.

Comments

PDF(937 KB)

Accesses

Citation

Detail

Sections
Recommended

/