Study on the Electromagnetic Shielding and Conductivity of Polyetheretherketone/Multi-Walled Carbon Nanotubes Composites

GAO Juan, XU Shao-juan

PDF(2647 KB)
PDF(2647 KB)
Plastics Science and Technology ›› 2024, Vol. 52 ›› Issue (08) : 18-23. DOI: 10.15925/j.cnki.issn1005-3360.2024.08.004
Theory and Research

Study on the Electromagnetic Shielding and Conductivity of Polyetheretherketone/Multi-Walled Carbon Nanotubes Composites

Author information +
History +

Abstract

The aim of this study is to investigate the effect of carbon nanotubes on the electromagnetic shielding and electrical conductivity of polyetheretherketone(PEEK). The modified multi-walled carbon nanotubes (mMWCNT) was prepared using cetyltrimethylammonium bromide (CTAB) as a dispersing agent. The PEEK/mMWCNT composits were prepared by the processing technology of wet mixing and extrusion blending. The results showed that the mMWCNT were well-dispersed in PEEK matrix, which provided strong support for improving the mechanical and electrical properties of the composites. When the mMWCNT mass fraction was lower than 2.0%, the mechanical properties of PEEK/mMWCNT composites were significantly improved. The mMWCNT formed a 3D network with good conductivity in PEEK. In terms of electromagnetic shielding performance, the total electromagnetic shielding efficiency of PEEK/mMWCNT composites ranged from3.35 dB to 24.47 dB, which indicated a good absorption of X-band electromagnetic waves. This study confirmed that PEEK/mMWCNT composites have superior electrical conductivity and electromagnetic shielding properties. Hence, the composites have a wide application potential in electronic equipment, communication technology and military protection.

Key words

Multi-walled carbon nanotube / Modification / Polyetheretherketone / Electrical conductivity / Electromagnetic shielding

Cite this article

Download Citations
GAO Juan , XU Shao-juan. Study on the Electromagnetic Shielding and Conductivity of Polyetheretherketone/Multi-Walled Carbon Nanotubes Composites. Plastics Science and Technology. 2024, 52(08): 18-23 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.08.004

References

1
李萌崛,陈德平,陈营,等.流道特征尺寸对PP/MWCNTs电磁屏蔽效能的影响研究[J].塑料科技,2022,50(5):71-75.
2
虞东霖,邹华,宁南英.硅橡胶基高导电复合材料的制备及其性能研究[J].橡胶工业,2023,70(7):483-489.
3
LI S, WEN F Y, SUN C, et al. A comparative study on the influences of whisker and conventional carbon nanotubes on the electrical and thermal conductivity of polyether ether ketone composites[J]. Journal of Applied Polymer Science, 2021, 138: 50720-50735.
4
MOKHTARI M, ARCHER E, BLOOMFIELD N, et al. A review of electrically conductive poly (ether ether ketone) materials[J]. Polymer International, 2021, 70(8): 1016-1025.
5
ZHANG X. Carbon nanotube/polyetheretherketone nanocomposites: Mechanical, thermal, and electrical properties[J]. Journal of Composite Materials, 2021, 55(15): 2115-2132.
6
文周,刘梦,唐先军,等.加工工艺参数对PEEK材料拉伸强度及结构稳定性的影响[J].塑料工业,2021,49(12):76-81.
7
谢金梦,逄显娟,黄素玲,等.碳纤维改性PEEK复合材料摩擦学性能及其应用研究进展[J].化工新型材料,2023,51(10):1-7.
8
任天翔,滕晓波,黄兴,等.聚醚醚酮的改性及应用研究进展[J].塑料科技,2022,50(9):123-128.
9
SUN Y L, DANG H B, TAN H Y, et al. Fabrication of high thermally conductive and electrical insulating composites by boron nitride-nanosheet-coated PEEK fiber[J]. Macromolecular Materials and Engineering, 2021, DOI: 10.1002/mame.202100532.
10
林欢,张建伦,寇爱静,等.PEEK基底上厚度为6.4 nm的金薄膜导热导电性能研究[J].中国材料进展,2020,39(5):379-384.
11
扶肖肖,宋桂珍,郭晓君,等.PEEK基耐磨导电复合材料[J].工程塑料应用,2020,48(2):1-5.
12
JIA Z J, WANG Z Y, LIANG J, et al. Production of short multi-walled carbon nanotubes[J]. Carbon, 1999, 37(6): 903-906.
13
BAHGAT M, FARGHALI A, ROUBY W E, et al. Synthesis and modification of multi-walled carbon nano-tubes (MWCNTs) for water treatment applications[J]. Journal of Analytical and Applied Pyrolysis, 2011, 92(2): 307-313.
14
吴同华,岳喜贵,梅笑寒,等.三明治结构多壁碳纳米管/聚醚醚酮电磁屏蔽复合材料的制备[J].高等学校化学学报,2021,42(8):2627-2634.
15
DRESSELHAUS M S, DRESSELHAUS G, SAITO R. Physics of carbon nanotubes[J]. Carbon, 1995, 33(7): 883-891.
16
MOHIUDDIN M, HOA S V. Temperature dependent electrical conductivity of CNT-PEEK composites[J]. Composites Science and Technology, 2011, 72(1): 21-27.
17
NA R, LIU J, WANG G, et al. Light weight and flexible poly(ether etherketone) based composite film with excellent thermal stability and mechanical properties for wide-band electromagnetic interference shielding[J]. RSC Advances, 2018, 8(6): 3296-3303.
18
SPITALSKY Z, TASIS D, PAPAGELIS K, et al. Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties[J]. Progress in Polymer Science, 2010, 35(3): 357-401.
19
BANDARU P R. Electrical properties and applications of carbon nanotube structures[J]. Journal of Nanoscience and Nanotechnology, 2007, 7(4/5): 1239-1267.
20
SIANIPAR M, KIM S H, ISKANDAR F, et al. Functionalized carbon nanotube (CNT) membrane: Progress and challenges[J]. RSC Advances, 2017, 7(81): 51175-51198.
21
ERADY V, MASCARENHAS R J, SATPATI A K, et al. Carbon paste modified with Bi decorated multi-walled carbon nanotubes and CTAB as a sensitive voltammetric sensor for the detection of caffeic acid[J]. Microchemical Journal, 2019, 146: 73-82.
22
万武波,李雨,谭涛,等.改性玻璃纤维膜的制备及其油水分离性能研究[J].中国石油和化工标准与质量,2023,43(23):116-118.
23
DAI H J. Carbon nanotubes: Opportunities and challenges[J]. Surface Science, 2002, 500(1/3): 218-241.
24
THEILER G, GRADT T. Friction and wear of PEEK composites in vacuum environment[J]. Wear, 2010, 269(3/4): 278-284.
25
POPOV V N. Carbon nanotubes: Properties and application[J]. Materials Science and Engineering: Reports, 2004, 43(3): 61-102.
26
FUJIHARA K, HUANG Z M, RAMAKRISHNA S, et al. Influence of processing conditions on bending property of continuous carbon fiber reinforced PEEK composites[J]. Composites Science and Technology, 2004, 64(16): 2525-2534.
27
WANG Q, DAI J, LI W, et al. The effects of CNT alignment on electrical conductivity and mechanical properties of SWNT/epoxy nanocomposites[J]. Composites Science and Technology, 2008, 68(7/8): 1644-1648.
28
ZARE Y, RHEE K Y. A power model to predict the electrical conductivity of CNT reinforced nanocomposites by considering interphase, networks and tunneling condition[J]. Composites Part B: Engineering, 2018, 155: 11-18.
29
BYRNE M T, GUNKO Y K. Recent advances in research on carbon nanotube—Polymer composites[J]. Advanced Materials, 2010, 22(15): 1672-1688.
30
GEETHA S, SATHEESH K K, RAO C R K, et al. EMI shielding: Methods and materials—A review[J]. Journal of Applied Polymer Science, 2009, 112(4): 2073-2086.
31
THOMASSIN J M, JÉRÔME C, PARDOEN T, et al. Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials[J]. Materials Science and Engineering: Reports, 2013, 74(7): 211-232.
32
AL-SALEH M H, SUNDARARAJ U. Electromagnetic interference shielding mechanisms of CNT/polymer composites[J]. Carbon, 2009, 47(7): 1738-1746.

Comments

PDF(2647 KB)

Accesses

Citation

Detail

Sections
Recommended

/