Effect of Chain Expansion Modified PBAT on PBAT/TPS/OMMT Composites under Chaotic Field

SHE Han-wen, ZHONG Jing-jun, GUO Wen-shuai, ZHU Jin-ping, LIU Yang-sen, XU Bai-ping, TAN Ling-cao

PDF(2196 KB)
PDF(2196 KB)
Plastics Science and Technology ›› 2024, Vol. 52 ›› Issue (08) : 1-6. DOI: 10.15925/j.cnki.issn1005-3360.2024.08.001
Theory and Research

Effect of Chain Expansion Modified PBAT on PBAT/TPS/OMMT Composites under Chaotic Field

Author information +
History +

Abstract

Polybutylene adipate-terephthalate/thermoplastic starch/organic montmorillonite (PBAT/TPS/OMMT) biodegradable materials have attracted wide attention in recent years. However, the conventional twin-screw processing technique leads to material degradation and makes it difficult to achieve good stripping of OMMT. In order to improve its mechanical properties, PBAT was chain expansion modified by ADR-4468, and PBAT/TPS/OMMT containing different contents of modified PBAT (A-PBAT) were prepared by melt extrusion using a perturbation ring dual-speed twin-screw extruder, and the effects of different contents of A-PBAT on the microstructure, rheological properties, compatibility, water absorption and mechanical properties of the composites were analyzed. The results showed that the chain extender effectively improved the mechanical properties of PBAT, and the dual-speed twin-screw could strip OMMT well and make TPS uniformly dispersed and distributed in PBAT. With the increase of A-PBAT content, TPS transforms from continuous phase to dispersed phase, the water absorption of the composite material gradually decreases, and the tensile strength gradually increases, reaching its maximum at a mass fraction of 60% A-PBAT, with a slight decrease in elongation at break. 20% A-PBAT can effectively improve the compatibility between TPS and PBAT.

Key words

Thermoplastic starch / Polybutylene adipate-terephthalate / Co-rotating dual-speed twin-screw / Chaos mixing

Cite this article

Download Citations
SHE Han-wen , ZHONG Jing-jun , GUO Wen-shuai , et al . Effect of Chain Expansion Modified PBAT on PBAT/TPS/OMMT Composites under Chaotic Field. Plastics Science and Technology. 2024, 52(08): 1-6 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.08.001

References

1
BANGAR S P, WHITESIDE W S, ASHOGBON A O, et al. Recent advances in thermoplastic starches for food packaging: A review[J]. Food Packaging and Shelf Life, 2021, DOI: 10.1016/j.fpsl.2021.100743.
2
朱建, 陈慧, 卢凯,等.淀粉基生物可降解材料的研究新进展[J].高分子学报,2020,51(9):983-95.
3
DAMMAK M, FOURATI Y, TARRÉS Q, et al. Blends of PBAT with plasticized starch for packaging applications: Mechanical properties, rheological behaviour and biodegradability[J]. Industrial Crops and Products, 2020, DOI: 10.1016/j.indcrop.2019.112061.
4
PHOTHISARATTANA D, HARNKARNSUJARIT N. Migration, aggregations and thermal degradation behaviors of TiO2 and ZnO incorporated PBAT/TPS nanocomposite blown films[J]. Food Packaging and Shelf Life, 2022, DOI: 10.1016/j.fpsl.2022.100901.
5
BURFORD T, RIEG W, MADBOULY S. Biodegradable poly(butylene adipate-co-terephthalate)(PBAT)[J]. Physical Sciences Reviews, 2023, 8(8): 1127-1156.
6
PHOTHISARATTANA D, WONGPHAN P, PROMHUAD K, et al. Blown film extrusion of PBAT/TPS/ZnO nanocomposites for shelf-life extension of meat packaging[J]. Colloids and Surfaces B: Biointerfaces, 2022, DOI: 10.1016/j.colsurfb.2022.112472.
7
ZHANG S D, LIN Z S, LI J, et al. Elevated ductility, optical, and air barrier properties of poly (butyleneadipate-co-terephthalate) bio-based films via novel thermoplastic starch feature[J]. Polymers for Advanced Technologies, 2019, 30(4): 852-862.
8
张贺,陈芳萍,刘昌胜.PBAT-g-MA对热塑性淀粉/聚己二酸-对苯二甲酸丁二酯共混合金性能的影响[J].塑料工业,2016,44(8):14-17, 22.
9
FOURATI Y, TARRÉS Q, MUTJÉ P, et al. PBAT/thermoplastic starch blends: Effect of compatibilizers on the rheological, mechanical and morphological properties[J]. Carbohydrate Polymers, 2018, 199: 51-57.
10
SILVA J B A, BRETAS R E S, LUCAS A A, et al. Rheological, mechanical, thermal, and morphological properties of blends poly(butylene adipate-co-terephthalate), thermoplastic starch, and cellulose nanoparticles[J]. Polymer Engineering & Science, 2020, 60(7): 1482-1493.
11
林泽声.离子/酸化改性对热塑性淀粉及其PBAT共混物的结构与性能影响[D].广州:华南理工大学,2018.
12
ZHANG S D, HE Y, LIN Z S, et al. Effects of tartaric acid contents on phase homogeneity, morphology and properties of poly (butyleneadipate-co-terephthalate)/thermoplastic starch bio-composities[J]. Polymer Testing, 2019, 76: 385-395.
13
LI X Y, GAO B B, ZHANG S D. Adjusting hydrogen bond by lever principle to achieve high performance starch-based biodegradable films with low migration quantity[J]. Carbohydrate Polymers, 2022, DOI: 10.1016/j.carbpol.2022.120107.
14
宋浩,白楠,宋立新,等.扩链剂对PBAT/TPS共混体系性能的影响[J].塑料科技,2022,50(5):23-28.
15
BAI J, PEI H J, ZHOU X P, et al. Reactive compatibilization and properties of low-cost and high-performance PBAT/thermoplastic starch blends[J]. European Polymer Journal, 2021, DOI: 10.1016/j.eurpolymj.2020.110198.
16
TUNTIWORADET T, YOKSAN R. Property improvement of a thermoplastic starch/poly(butylene adipate-co-terephthalate) blown film by the addition of sodium nitrite[J]. International Journal of Biological Macromolecules, 2023, DOI:10.1016/j.ijbiomac.2023.124991.
17
JIANG X D, WANG J H, ZHANG J T, et al. Preparation of high-performance poly(butylene adipate-co-terephthalate)/thermoplastic starch compounds with epoxidized soybean oil as compatibilizer[J]. Polymer Engineering & Science, 2023, 63(9): 2878-2890.
18
LENDVAI L, APOSTOLOV A, KARGER-KOCSIS J. Characterization of layered silicate-reinforced blends of thermoplastic starch (TPS) and poly(butylene adipate-co-terephthalate)[J]. Carbohydrate Polymers, 2017, 173: 566-572.
19
JIANG J Z, ZHANG X C, GAO S, et al. Effects of adding methods and modification types of cellulose on the physicochemical properties of starch/PBAT blown films[J]. International Journal of Biological Macromolecules, 2022, 223: 1335-1343.
20
ZHANG G Z, WU T, LIN W Y, et al. Preparation of polymer/clay nanocomposites via melt intercalation under continuous elongation flow[J]. Composites Science and Technology, 2017, 145: 157-164.
21
LI M, HASJIM J, XIE F W, et al. Shear degradation of molecular, crystalline, and granular structures of starch during extrusion[J]. Starch-Stärke, 2014, 66(7-8): 595-605.
22
白娟.基于反应性增容、拉伸挤出和MCC改性的PBAT/热塑性淀粉共混物[D].武汉:华中科技大学,2020.
23
李秋霞,谭寿再,喻慧文,等.同向差速双螺杆摄动环元件作用下分散混合性能[J].工程塑料应用,2021,49(6):72-77, 83.
24
张志旋,谭寿再,杨卫波,等.同向差速双螺杆引入摄动环元件制备PP/ABS复合材料[J].工程塑料应用,2021,49(5):63-68.
25
杨卫波,周延辉,肖书平,等.新型同向差速摄动环双螺杆制备PP/ABS复合材料[J].现代塑料加工应用,2022,34(3):9-12.
26
张晓亚,郭健,宁强,等.利用流变仪测定聚苯乙烯的分子量和分子量分布的研究[J].分析测试技术与仪器,2007(3):202-205.
27
赵明亮.无机物填充改性淀粉双轴偏心转子挤出制备及其结构性能研究[D].广州:华南理工大学, 2021.
28
XU B P, LIANG R F, XIAO S P, et al. Improving mixing by changing topology through intermeshed perturbation rings in a co-rotating non-twin screw channel[J]. Macromolecular Theory and Simulations, 2023, DOI: 10.1002/mats.202300048.
29
FOURATI Y, TARRÉS Q, DELGADO-AGUILAR M, et al. Cellulose nanofibrils reinforced PBAT/TPS blends: Mechanical and rheological properties[J]. International Journal of Biological Macromolecules, 2021, 183: 267-275.
30
樊慧娟,王晶,张惠.动态热机械分析在高分子聚合物及复合材料中的应用[J].化学与黏合,2017,39(2):132-134.
31
BALLA B, BARTOS A, KUN D, et al. Improving mechanical and water sorption properties of thermoplastic starch by incorporating chitosan filler[J]. Polymer Testing, 2021, DOI: 10.1016/j.polymer-testing.2021.107278.

Comments

PDF(2196 KB)

Accesses

Citation

Detail

Sections
Recommended

/