Research Progress of Photocatalytic Degradation and Recycling of Plastics

ZHAO Hui-ying, LI Wei, LIU Feng-jie, XIONG Jian, LÜ Xue-bin

PDF(1202 KB)
PDF(1202 KB)
Plastics Science and Technology ›› 2024, Vol. 52 ›› Issue (07) : 141-146. DOI: 10.15925/j.cnki.issn1005-3360.2024.07.030
Review

Research Progress of Photocatalytic Degradation and Recycling of Plastics

Author information +
History +

Abstract

In order to reduce the environmental pollution caused by plastic waste, research is being conducted on the photocatalytic degradation and recycling of plastics, utilizing the degradation mechanism of solar photoinitiation and photocatalysis to convert plastics into water and carbon dioxide, or further into hydrogen fuel and high-value chemicals. The article introduces the effects of catalyst characteristics, plastics, and degradation conditions on photocatalytic degradation, summarizes the applications of different types of inorganic metal, non-metal materials, and organic-inorganic composite photocatalysts in photocatalytic degradation and recycling, and aims to improve photocatalytic efficiency through catalyst modification and synergistic effects with electrocatalysis, thermocatalysis, and biocatalysis. The article points out the problems in the pre-treatment and post-treatment of photocatalytic degradation plastic recycling technology, providing a reliable basis and research direction for the recycling and treatment of waste plastics.

Key words

Plastic degradation / Photocatalytic degradation / Processing technology / Cooperative processing

Cite this article

Download Citations
ZHAO Hui-ying , LI Wei , LIU Feng-jie , et al . Research Progress of Photocatalytic Degradation and Recycling of Plastics. Plastics Science and Technology. 2024, 52(07): 141-146 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.07.030

References

1
XU Q, LI G, FANG L, et al. Enhanced formation of 6PPD-Q during the aging of tire wear particles in anaerobic flooded soils: The role of iron reduction and environmentally persistent free radicals[J]. Environmental Science & Technology, 2023, 57(14): 5978-5987.
2
SUBRAMANIAN M. Plastics tsunami: Can a landmark treaty stop waste from choking the oceans?[J]. Nature, 2022, 611(7937): 650-653.
3
BERGMANN M, COLLARD F, FABRES J, et al. Plastic pollution in the Arctic[J]. Nature Reviews Earth & Environment, 2022, 3(5): 323-337.
4
LIU Z, SOKRATIAN A, DUDA A M, et al. Anionic nanoplastic contaminants promote Parkinson's disease-associated alpha-synuclein aggregation[J]. Research Square, 2023, DOI:10.1126/sciadv.adi8716.
5
CHU S, ZHANG B W, ZHAO X, et al. Photocatalytic conversion of plastic waste: From photodegradation to photosynthesis[J]. Advanced Energy Materials, 2022, DOI: 10.1002/aenm.202200435.
6
MOHARIR R V, KUMAR S. Challenges associated with plastic waste disposal and allied microbial routes for its effective degradation: A comprehensive review[J]. Journal of Cleaner Production, 2019, 208: 65-76.
7
孙昱楠,张帆,李建园,等.废塑料处置与利用技术研究进展[J].中国工程科学,2023,25(3):182-196.
8
苗开珍,孟娇龙,姜雪峰.塑料废弃物污染及降解的研究进展[J].华东师范大学学报:自然科学版,2023(1):170-176.
9
孙静,熊礼龙,刘乐.聚乙烯塑料光降解研究进展[J].塑料科技,2022,50(7):120-123.
10
KISCH H. Semiconductor photocatalysis: Princples and applications[M]. Angewandte Chemie, 2015, DOI: 10.1002/anie.201501876.
11
JIANG D, YUAN H F, LIU Z, et al. Defect-anchored single-atom-layer Pt clusters on TiO2x/Ti for efficient hydrogen evolution via photothermal reforming plastics[J]. Applied Catalysis B: Environmental, 2023, DOI:10.1016/j.apcatb.2023.123081.
12
GARCIA-MONTELONGO X L, MARTINEZ-DE LA CRUZ A, VAZQUEZ-RODRIGUEZ S, et al. Photo-oxidative degradation of TiO2/polypropylene films[J]. Materials Research Bulletin, 2014, 51: 56-62.
13
XU J Z, YANG W, ZHANG C Q, et al. Photo-oxidation and biodegradation of polyethylene films containing polyethylene glycol modified TiO2 as pro-oxidant additives[J]. Polymer Composites, 2018, 39(S1): E531-E539.
14
杨昌军,彭天右,邓克俭,等.固相光催化降解废弃塑料[J].化学进展,2011,23(5):874-879.
15
TOFA T S, KUNJALI K L, PAUL S, et al. Visible light photocatalytic degradation of microplastic residues with zinc oxide nanorods[J]. Environmental Chemistry Letters, 2019, 17(3): 1341-1346.
16
张妍,吴迪,李晨,等.半导体掺杂促进塑料可光降解性能的研究进展[J].应用化工,2020,49(5):1274-1277, 1283.
17
LAM S M, SIN J C, ZENG H, et al. Green synthesis of Fe-ZnO nanoparticles with improved sunlight photocatalytic performance for polyethylene film deterioration and bacterial inactivation[J]. Materials Science in Semiconductor Processing, 2021, DOI:10.1016/j.mssp.2020.105574.
18
LI H, LI J, AI Z H, et al. Oxygen vacancy-mediated photocatalysis of BiOCl: Reactivity, selectivity, and perspectives[J]. Angewandte Chemie-International Edition, 2018, 57(1): 122-138.
19
PINO-RAMOS V H, BUCIO E, DIAZ D. Fast photocatalytic polypropylene degradation by nanostructured bismuth catalysts[J]. Polymer Degradation and Stability, 2021, DOI:10.1016/j.polymdegradstab.2021.109648.
20
UEKERT T, KUEHNEL M F, WAKERLEY D W, et al. Plastic waste as a feedstock for solar-driven H2 generation[J]. Energy & Environmental Science, 2018, 11(10): 2853-2857.
21
MENG X, PENG X, XUE J, et al. A biomass-derived, all-day-round solar evaporation platform for harvesting clean water from microplastic pollution[J]. Journal of Materials Chemistry A, 2021, 9(17): 11013-11024.
22
CAO R, ZHANG M Q, HU C, et al. Catalytic oxidation of polystyrene to aromatic oxygenates over a graphitic carbon nitride catalyst[J]. Nature Communications, 2022, DOI:10.1038/s41467-022-32510-x.
23
NINGSIH L A, LU P Y, ASHIMURA S, et al. Highly effective photocatalytic degradation of plastic film (LDPE) using ruthenium-incorporated g-C3N4 via the Norrish mechanism[J]. Chemical Engineering Journal, 2024, DOI:10.1016/j.cej.2023.148089.
24
XING C W, YU G Y, ZHOU J, et al. Solar energy-driven upcycling of plastic waste on direct Z-scheme heterostructure of V-substituted phosphomolybdic acid/g-C3N4 nanosheets[J]. Applied Catalysis B-Environmental, 2022, DOI:10.1016/j.apcatb.2022.121496.
25
WU Y F, WANG X J, KIRLIKOVALI K O, et al. Catalytic degradation of polyethylene terephthalate using a phase-transitional zirconium-based metal-organic framework[J]. Angewandte Chemie-International Edition, 2022, DOI:10.1002/anie.202117528.
26
QIN J B, DOU Y B, WU F Y, et al. In-situ formation of Ag2O in metal-organic framework for light-driven upcycling of microplastics coupled with hydrogen production[J]. Applied Catalysis B—Environmental, 2022, DOI:10.1016/j.apcatb.2022.121940.
27
蒋清梅,杨洋,文彬洁.溴氧化铋掺杂聚乙烯薄膜的可见光自降解性能研究[J].塑料科技,2021,49(6):66-69.
28
LI W, ZHAO W, ZHU H, et al. State of the art in the photochemical degradation of (micro)plastics: From fundamental principles to catalysts and applications[J]. Journal of Materials Chemistry A, 2023, 11(6): 2503-2527.
29
GOU N, YANG W Y, GAO S, et al. Incorporation of ultrathin porous metal-free graphite carbon nitride nanosheets in polyvinyl chloride for efficient photodegradation[J]. Journal of Hazardous Materials, 2023, DOI:10.1016/j.jhazmat.2023.130795.
30
ZHOU D W, LUO H X, ZHANG F Z, et al. Efficient photocatalytic degradation of the persistent PET fiber-based microplastics over Pt nanoparticles decorated N-Doped TiO2 nanoflowers[J]. Advanced Fiber Materials, 2022, 4(5): 1094-1097.
31
LLORENTE-GARCÍA B E, HERNANDEZ-LOPEZ J M, ZALDIVAR-CADENA A A, et al. First insights into photocatalytic degradation of HDPE and LDPE microplastics by a mesoporous N-TiO2 coating: Effect of size and shape of microplastics[J]. Coatings, 2020, DOI:10.3390/coatings10070658.
32
MENG J, ZHOU Y, LI D, et al. Degradation of plastic wastes to commercial chemicals and monomers under visible light[J]. Science Bulletin, 2023, 68(14): 1522-1530.
33
MAO R, LANG M, YU X, et al. Aging mechanism of microplastics with UV irradiation and its effects on the adsorption of heavy metals[J]. Journal of Hazardous Materials, 2020, DOI:10.1016/j.jhazmat.2020.122515.
34
余小琴.光照对微塑料老化的影响过程和机制[D].杨凌:西北农林科技大学,2022.
35
ARIZA-TARAZONA M C, VILLARREAL-CHIU J F, HERNÁNDEZ-LÓPEZ J M, et al. Microplastic pollution reduction by a carbon and nitrogen-doped TiO2: Effect of pH and temperature in the photocatalytic degradation process[J]. Journal of Hazardous Materials, 2020, DOI:10.1016/j.jhazmat.2020.122632.
36
刘昕,戈钧,李春.光驱动微生物杂合系统提高生物制造水平[J].化工学报,2023,74(1):330-341.
37
李亚峰,王志博,伍健伯.光电催化及其耦合技术的研究进展[J].现代化工,2023,43(10):30-35.
38
KIM J, JANG J, HILBERATH T, et al. Photoelectrocatalytic biosynthesis fuelled by microplastics[J]. Nature Synthesis, 2022, 1(10): 776-786.
39
MIAO Y X, ZHAO Y X, WATERHOUSE G I N, et al. Photothermal recycling of waste polyolefin plastics into liquid fuels with high selectivity under solvent-free conditions[J]. Nature Communications, 2023, DOI:10.1038/s41467-023-40005-6.
40
YE J, CHEN Y P, GAO C, et al. Sustainable conversion of microplastics to methane with ultrahigh selectivity by a biotic-abiotic hybrid photocatalytic system[J]. Angewandte Chemie-International Edition, 2022, DOI:10.1002/anie.202213244.
41
LIU F, ZHUANG X J, DU Z F, et al. Enhanced photocatalytic performance by polarizing ferroelectric KNbO3 for degradation of plastic wastes under mild conditions[J]. Applied Catalysis B—Environmental, 2022, DOI:10.1016/j.apcatb.2022.121897.
42
LIU Y, ZHANG C, FENG J, et al. Integrated photochromic-photothermal processes for catalytic plastic upcycling[J]. Angewandte Chemie—International Edition, 2023, DOI: 10.1002/anie.202308930.
43
LOU X, GAO X, LIU Y, et al. Highly efficient photothermal catalytic upcycling of polyethylene terephthalate via boosted localized heating[J]. Chinese Journal of Catalysis, 2023, 49: 113-122.
44
THEW X E C, LO S C, RAMANAN R N, et al. Enhancing plastic biodegradation process: Strategies and opportunities[J]. Critical Reviews in Biotechnology, 2023, DOI: 10.1080/07388551.2023.2170861.
45
YUAN Y B, ZHOU W K, LIANG Q F, et al. Advances in biodegradation of polyolefin plastics[J]. Sheng Wu Gong Cheng Xue Bao, 2023, 39(5): 1930-1948.
46
李凤红,李鹏珍,笪伟,等.光-生物可降解LDPE/纳米TiO2/TPS复合膜材料的制备及性能研究[J].化工新型材料,2023,51(1):290-295.
47
钟宛真,单斌,谭伟强,等.水中微塑料光催化处理的进展[J].精细化工,2023,40(6):1176-1186.
48
LI W Y, WU C J, XIONG Z, et al. Self-driven magnetorobots for recyclable and scalable micro/nanoplastic removal from nonmarine waters[J]. Science Advances, 2022, DOI:10.1126/sciadv.ade1731.
49
BELADI-MOUSAVI S M, HERMANOVA S, YING Y, et al. A maze in plastic wastes: Autonomous motile photocatalytic microrobots against microplastics[J]. ACS Applied Materials & Interfaces, 2021, 13(21): 25102-25110.
50
KIM J, MAYORGA-MARTINEZ C C, PUMERA M. Magnetically boosted 1D photoactive microswarm for COVID-19 face mask disruption[J]. Nature Communications, 2023, DOI:10.1038/s41467-023-36650-6.

Comments

PDF(1202 KB)

Accesses

Citation

Detail

Sections
Recommended

/