Research Progress of Carbon-Based Composite Hydrogels in Adsorption

WANG Xiang-peng, GAO Yi-lun, LI Yan-ru, LIU Qing-lin, ZHANG Hao-teng, ZHENG Yun-xiang, CHEN Chun-mao

PDF(1137 KB)
PDF(1137 KB)
Plastics Science and Technology ›› 2024, Vol. 52 ›› Issue (07) : 135-140. DOI: 10.15925/j.cnki.issn1005-3360.2024.07.029
Review

Research Progress of Carbon-Based Composite Hydrogels in Adsorption

Author information +
History +

Abstract

Carbon-based materials have large specific surface area, well-developed pores, and a large number of oxygen-containing functional groups on the surface, which have excellent mechanical properties. Introducing carbon-based materials into the hydrogel system can increase adsorption sites, improve mechanical properties, enrich network structure, realize complementary advantages, and overcome performance defects, which is the main idea for developing high-performance hydrogel adsorbents. In this paper, the structural characteristics of different types of carbon based composite hydrogels were summarized, and the mechanism of carbon based materials to enhance the performance of hydrogels was emphatically introduced. The preparation methods of composite hydrogels and their applications in the field of water purification were reviewed. The prospects, limitations and future research potential of carbon based composite hydrogels adsorbents were analyzed.

Key words

Carbon based materials / Composite hydrogel / Adsorption / Modification / Mechanical strength

Cite this article

Download Citations
WANG Xiang-peng , GAO Yi-lun , LI Yan-ru , et al . Research Progress of Carbon-Based Composite Hydrogels in Adsorption. Plastics Science and Technology. 2024, 52(07): 135-140 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.07.029

References

1
张绍鹏,建伟伟,马丹竹,等.碳基及碳基复合材料吸附剂对VOCs吸附性能研究进展[J].辽宁石油化工大学学报,2021,41(1):30-36.
2
WANG W J, LIN J X, SHAO S B, et al. Enhanced adsorption of benzo (a) pyrene in soil by porous biochar: Adsorption kinetics, thermodynamics, and mechanisms[J]. Journal of Environmental Chemical Engineering, 2023, DOI: 10.1016/j.jece.2022.109002.
3
JAWAD A H, ABDULHAMEED A S, WILSON L D, et al. High surface area and mesoporous activated carbon from KOH-activated dragon fruit peels for methylene blue dye adsorption: Optimization and mechanism study[J]. Chinese Journal of Chemical Engineering, 2021, 32: 281-290.
4
SOFFIAN M S, HALIM F Z A, AZIZ F, et al. Carbon-based material derived from biomass waste for wastewater treatment[J]. Environmental Advances, 2022, DOI:10.1016/j.envadv.2022.100259.
5
SIVAKUMAR R, LEE N Y. Adsorptive removal of organic pollutant methylene blue using polysaccharide-based composite hydrogels[J]. Chemosphere, 2022, DOI:10.1016/j.chemosphere.2021.131890.
6
ZHU H L, CHEN S N, LUO Y C. Adsorption mechanisms of hydrogels for heavy metal and organic dyes removal: A short review[J]. Journal of Agriculture and Food Research, DOI:10.1016/j.jafr.2023.100552.
7
SABZEHMEIDANI M M, MAHNAEE S, GHAEDI M, et al. Carbon based materials: A review of adsorbents for inorganic and organic compounds[J]. Materials Advances, 2021, 2(2): 598-627.
8
TIWARI S K, SAHOO S, WANG N, et al. Graphene research and their outputs: Status and prospect[J]. Journal of Science: Advanced Materials and Devices, 2020, 5(1): 10-29.
9
KUMAR S, HIMANSHI, PRAKASH J, et al. A review on properties and environmental applications of graphene and its derivative-based composites[J]. Catalysts, 2023, DOI: 10.3390/catal13010111.
10
SUN Y C, LIU X N, LV X T, et al. Synthesis of novel lignosulfonate-modified graphene hydrogel for ultrahigh adsorption capacity of Cr (Ⅵ) from wastewater[J]. Journal of Cleaner Production, 2021, DOI: 10.1016/j.jclepro.2021.126406.
11
SUN Y R, YU F, LI L Q, et al. Adsorption-reduction synergistic effect for rapid removal of Cr (Ⅵ) ions on superelastic NH2-graphene sponge[J]. Chemical Engineering Journal, 2021, DOI: 10.1016/j.cej.2021.129933.
12
刘雅琼,王广克,李文鹏,等.氧化石墨烯/氟橡胶复合材料的制备及性能研究[J].橡胶工业,2022,69(3):187-191.
13
张聂,卢小菊,孟鸳.氧化石墨烯增强聚丙烯酰胺水凝胶的力学性能[J].高分子材料科学与工程,2019,35(9):53-61.
14
TAMER Y, BERBER H. Effective removal of crystal violet from aqueous solution by graphene oxide incorporated hydrogel beads as a novel bio-adsorbent: Kinetic, isotherm and thermodynamic studies[J]. Journal of Macromolecular Science, Part A, 2022, 59(4): 315-328.
15
KAHYA N, ERIM F B. Graphene oxide/chitosan-based composite materials as adsorbents in dye removal[J]. Chemical Engineering Communications, 2022, 209(12): 1711-1726.
16
LEMMA E, KIFLIE Z, KASSASUN S K. Adsorption of Cr (Ⅵ) ion from aqueous solution on acrylamide–grafted starch (Coccinia abyssinicca)-PVA/PVP/chitosan/graphene oxide blended hydrogel: Isotherms, kinetics, and thermodynamics studies[J]. Separation Science and Technology, 2023, 58(2): 241-256.
17
CAO J L, HE G H, NING X Q, et al. Preparation and properties of O-chitosan quaternary ammonium salt/polyvinyl alcohol/graphene oxide dual self-healing hydrogel[J]. Carbohydrate Polymers, 2022, DOI: 10.1016/j.carbpol.2022.119318.
18
LIU C Y, LIU H Y, TANG K Y, et al. High-strength chitin based hydrogels reinforced by tannic acid functionalized graphene for congo red adsorption[J]. Journal of Polymers and the Environment, 2020, 28: 984-994.
19
QIU M Q, LIU L J, LING Q, et al. Biochar for the removal of contaminants from soil and water: A review[J]. Biochar, 2022, DOI: 10.1007/s42773-022-00146-1.
20
ANAE J, AHMAD N, KUMAR V, et al. Recent advances in biochar engineering for soil contaminated with complex chemical mixtures: Remediation strategies and future perspectives[J]. Science of the Total Environment, 2021, DOI: 10.1016/j.scitotenv.2020.144351.
21
WU Z Y, ZHANG P, ZHANG H H, et al. Tough porous nanocomposite hydrogel for water treatment[J]. Journal of Hazardous Materials, 2022, DOI: 10.1016/j.jhazmat.2021.126754.
22
YANG L Z, BAO L, DONG T, et al. Adsorption properties of cellulose/guar gum/biochar composite hydrogel for Cu2+, Co2+ and methylene blue[J]. International Journal of Biological Macromolecules, 2023, DOI: 10.1016/j.ijbiomac.2023.125021.
23
WANG X P, ZHENG Y X, ZONG L N, et al. Hydrogel-biochar composites for removal of methylene blue: Adsorption performance, characterization, and adsorption isotherm, kinetics, thermodynamics analysis[J]. Journal of Applied Polymer Science, 2022, DOI: 10.1002/app.53219.
24
GUO Y Y, LIU X, XIE S B, et al. 3D ZnO modified biochar-based hydrogels for removing U (Ⅵ) in aqueous solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, DOI: 10.1016/j.colsurfa.2022.128606.
25
SALEM D B, OUAKOUAK A, TOUAHRA F, et al. Easy separable, floatable, and recyclable magnetic-biochar/alginate bead as super-adsorbent for adsorbing copper ions in water media[J]. Bioresource Technology, 2023, DOI: 10.1016/j.biortech.2023.129225.
26
DAS R, BADNYOPADHAHY R, PRAMINNIK P. Carbon quantum dots from natural resource: A review[J]. Materials today chemistry, 2018, 8: 96-109.
27
WU S W, ZHOU C, MA C M, et al. Carbon quantum dots-based fluorescent hydrogel hybrid platform for sensitive detection of iron ions[J]. Journal of Chemistry, 2022, DOI: 10.1155/2022/3737646.
28
ZHANG D D, TIAN X T, LI H H, et al. Novel fluorescent hydrogel for the adsorption and detection of Fe (Ⅲ)[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, DOI: 10.1016/j.colsurfa.2020.125563.
29
JING L M, DING Q J, LI X, et al. Bifunctional collagen fiber/carbon quantum dot fluorescent adsorbent for efficient adsorption and detection of Pb2+ [J]. Science of The Total Environment, 2023, DOI: 10.1016/j.scitotenv.2023.161989.
30
HE X Y, JIA H, SUN N, et al. Fluorescent hydrogels based on oxidized carboxymethyl cellulose with excellent adsorption and sensing abilities for Ag+ [J]. International Journal of Biological Macromolecules, 2022, 213: 955-966.
31
ZHANG X F, PENG J W, QI X M, et al. Nanocellulose/carbon dots hydrogel as superior intensifier of ZnO/AgBr nanocomposite with adsorption and photocatalysis synergy for Cr (Ⅵ) removal[J]. International Journal of Biological Macromolecules, 2023, DOI: 10.1016/j.ijbiomac.2023.123566.
32
赛亚尔·斯迪克,伊尔夏提·地里夏提.功能高分子/碳纳米管复合材料的应用进展[J].化工新型材料,2023,51(6):8-12, 17.
33
郎林,江林,朱丹,等.碳纳米管对孔雀石绿的吸附特性[J].环境科学与技术,2014,37(12):166-173.
34
于萌,刘淼.碳纳米管促进丙烯酸系水凝胶对染料吸附性能的研究[J].科学技术与工程,2019,19(18):356-360.
35
程亚玮,李欢军,张公正.碳纳米管基聚合物水凝胶研究进展[J].中国科技论文,2013,8(9):856-861.
36
MAKHADO E, HATO M J. Preparation and characterization of sodium alginate-based oxidized multi-walled carbon nanotubes hydrogel nanocomposite and its adsorption behaviour for methylene blue dye[J]. Frontiers in Chemistry, 2021, DOI: 10.3389/fchem.2021.576913.
37
MALLAKPOUR S, TABESH F. Green and plant-based adsorbent from tragacanth gum and carboxyl-functionalized carbon nanotube hydrogel bionanocomposite for the super removal of methylene blue dye[J]. International Journal of Biological Macromolecules, 2021, 166: 722-729.
38
AL-HARBY N F, ALMARSHED M S, MOHAMED N A. Effect of single-walled carbon nanotubes on the adsorption of Basic Red 12 dye by trimellitic anhydride isothiocyanate-crosslinked chitosan hydrogel[J]. Cellulose Chemistry Technology, 2023, 57: 445-458.
39
王雪,孙洋,赵冠宇,等.碳纳米管复合纤维素水凝胶的界面光热净水性能研究[J].新型炭材料:中英文,2023,38(1):162-172.
40
张文博,李思纯,马建中,等.氧化石墨烯/天然高分子复合吸附材料在水处理中的应用[J].精细化工,2021,38(4):683-693.
41
DU J, ZHU W L, SHE X H, et al. A robust and fluorescent nanocomposite hydrogel with an interpenetrating polymer network based on graphene quantum dots[J]. Polymer Engineering & Science, 2023, 63(7): 2169-2179.
42
YUE Y Y, WANG X H, WU Q L, et al. Assembly of polyacrylamide-sodium alginate-based organic-inorganic hydrogel with mechanical and adsorption properties[J]. Polymers, 2019, DOI: 10.3390/polym11081239.
43
余明清,廖耀祖,朱美芳.共轭聚合物水凝胶的制备与应用进展[J].高分子学报,2021,52(2):113-123.
44
王向鹏,郑云香,宗丽娜,等.氧化石墨烯改性吸水树脂的制备及应用[J].化工进展,2020,39(12):5125-5135.
45
揭伟伟,林鑫晨,邓文勇,等.生物炭复合高吸水树脂吸附亚甲基蓝性能研究[J].应用化工,2021,50(12):3325-3328, 3332.
46
FENG Z Y, FENG C P, CHEN N, et al. Preparation of composite hydrogel with high mechanical strength and reusability for removal of Cu (Ⅱ) and Pb (Ⅱ) from water[J]. Separation and Purification Technology, 2022, DOI: 10.1016/j.seppur.2022.121894.
47
WANG X, LIU Q, LIU J Y, et al. 3D self-assembly polyethyleneimine modified graphene oxide hydrogel for the extraction of uranium from aqueous solution[J]. Applied Surface Science, 2017, 426: 1063-1074.
48
GAO F X, TENG H, SONG J Y, et al. A flexible and highly sensitive nitrite sensor enabled by interconnected 3D porous polyaniline/carbon nanotube conductive hydrogels[J]. Analytical Methods, 2020, 12(5): 604-610.
49
ZHANG P, XU Z Y, WU Z Y, et al. Strengthening poly (2-hydroxyethyl methacrylate) hydrogels using biochars and hydrophobic aggregations[J]. International Journal of Smart and Nano Materials, 2022, 13(4): 561-574.
50
CHEN J, SHI X, REN L, et al. Graphene oxide/PVA inorganic/organic interpenetrating hydrogels with excellent mechanical properties and biocompatibility[J]. Carbon, 2017, 111: 18-27.
51
LIU J, FAN X, TAO Y, et al. Two-step freezing polymerization method for efficient synthesis of high-performance stimuli-responsive hydrogels[J]. ACS Omega, 2020, 5(11): 5921-5930.
52
李欣儒,郑力军,石华强,等.P(AA-AM)复合石墨烯凝胶暂堵剂的研制及性能评价[J].应用化工,2019,48(8):1805-1808.
53
朱雯雯,徐稳,霍又嘉,等.石墨烯水凝胶的制备及其吸附性能研究[J].化肥设计,2021,59(1):10-13.
54
MA J, SUN Y R, ZHANG M Z, et al. Comparative study of graphene hydrogels and aerogels reveals the important role of buried water in pollutant adsorption[J]. Environmental Science & Technology, 2017, 51(21): 12283-12292.
55
何梦奇,徐继红,段贤扬,等.GO/GA-g-PAMPS复合水凝胶的制备及其对阳离子染料的吸附性能[J].精细化工,2020,37(5):924-932.
56
于振琪,王睛,宋亚文,等.改性NBC/CTS复合水凝胶珠的制备及对水溶液中孔雀石绿的吸附[J].吉林建筑大学学报,2022,39(4):23-28.
57
HUANG Q, ZHOU Y M, FU Z W, et al. Preparation of an injectable hydrogel reinforced by graphene oxide and its application in dye wastewater treatment[J]. Journal of Materials Science, 2023, 58(7): 3117-3133.
58
SILVA E C, SOARES V R, NÖRNBERG A B, et al. Recyclable 3D-printed composite hydrogel containing rice husk biochar for organic contaminants adsorption in tap water[J]. ACS Applied Polymer Materials, 2023, 5(10): 8415-8429.
59
LI J, WANG Y, YUE Y. A transparent, high-strength, and recyclable core-shell structured wood hydrogel integrated with carbon dots for photodegradation of Rhodamine B[J]. ACS Applied Nano Materials, 2023, 6(4): 2894-2907.

Comments

PDF(1137 KB)

Accesses

Citation

Detail

Sections
Recommended

/