Dispersion Structure of BN in LLDPE/POE Blends and Its Influences on Thermally Conductivity of Composites

QU Qi, PAN Lin, LIANG Bin, HAN Zhi-dong

PDF(2874 KB)
PDF(2874 KB)
Plastics Science and Technology ›› 2024, Vol. 52 ›› Issue (07) : 69-74. DOI: 10.15925/j.cnki.issn1005-3360.2024.07.015
Processing and Application

Dispersion Structure of BN in LLDPE/POE Blends and Its Influences on Thermally Conductivity of Composites

Author information +
History +

Abstract

Using linear low-density polyethylene (LLDPE) and polyolefin elastomer (POE) as polyolefin materials and boron nitride (BN) as thermal conductivity filler, the LLDPE/POE/BN thermal conductivity composites was prepared by melt blending hot pressing method. The influence of the process on the dispersion structure of BN was studied, and the relationship between the structure and thermal conductivity of the composites was discussed. The thermal conductivity and temperature field of the composites were predicted by finite element simulation. The results show that the composites with different BN dispersion structures are obtained by three processes. The cocontinuous structure composites formed by BN dispersed in LLDPE phase has excellent thermal conductivity. When the mass fraction of BN is 40% and 50%, the thermal conductivity of the composites is 0.72 W/(m·K) and 0.91 W/(m·K), respectively. Based on the dispersion structure of BN, the structure model of the composites was constructed, the thermal conductivity of the composites was predicted successfully, and the better heat transfer behavior of the composites was revealed.

Key words

Polyolefin / Boron nitride / Thermal conductivity / Finite element simulation

Cite this article

Download Citations
QU Qi , PAN Lin , LIANG Bin , et al. Dispersion Structure of BN in LLDPE/POE Blends and Its Influences on Thermally Conductivity of Composites. Plastics Science and Technology. 2024, 52(07): 69-74 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.07.015

References

1
USMAN A U C, MABROUK A N, ABDALA A. Thermally enhanced polyolefin composites: Fundamentals, progress, challenges, and prospects[J]. Science and Technology of Advanced Materials, 2020, 21(1): 737-766.
2
BURGER N, LAACHACHI A, FERRIOL M, et al. Review of thermal conductivity in composites: Mechanisms, parameters and theory[J]. Progress in Polymer Science, 2016, 61: 1-28.
3
HAN Z D, ALBERTO F. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review[J]. Progress in Polymer Science, 2011, 36(7): 914-944.
4
MAO L, HAN J, ZHAO D, et al. Particle packing theory guided thermal conductive polymer preparation and related properties[J]. ACS Applied Materials & Interfaces, 2018, 10(39): 33556-33563.
5
吴佳玮.导热聚丙烯复合材料的制备与性能研究[D].上海:上海交通大学,2017.
6
黄威.导热绝缘聚丙烯复合材料的制备与性能研究[D].哈尔滨:哈尔滨理工大学,2021.
7
徐睿杰,雷彩红,杨志广,等.填充型聚合物基导热复合材料[J].宇航材料工艺,2011,41(6):14-17.
8
林正得,颜庆伟,代文,等.六方氮化硼导热复合材料研究进展[J].集成技术,2019,8(1):24-37.
9
DENG H, LIN L, JI M Z, et al. Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials[J]. Progress in Polymer Science, 2014, 39(4): 627-655.
10
GU J W, GUO Y Q, LV Z Y, et al. Highly thermally conductive POSS-g-SiCp/UHMWPE composites with excellent dielectric properties and thermal stabilities[J]. Composites Part A: Applied Science and Manufacturing, 2015, 78: 95-101.
11
CHEN L, HOU X S, SONG N, et al. Cellulose/graphene bioplastic for thermal management: Enhanced isotropic thermally conductive property by three-dimensional interconnected graphene aerogel[J]. Composites Part A: Applied Science and Manufacturing, 2017, 107(1): 189-196.
12
LI X H, SHAO L B, SONG N, et al. Enhanced thermal-conductive and anti-dripping properties of polyamide composites by 3D graphene structures at low filler content[J]. Composites Part A: Applied Science and Manufacturing, 2016, 88: 305-314.
13
ZHU B L, WANG J, ZHENG H, et al. Investigation of thermal conductivity and dielectric properties of LDPE-matrix composites filled with hybrid filler of hollow glass microspheres and nitride particles[J]. Composites Part B: Engineering, 2015, 69(10): 496-506.
14
CHOI S, KIN J. Thermal conductivity of epoxy composites with a binary-particle system of aluminum oxide and aluminum nitride fillers[J]. Composites Part B: Engineering, 2013, 51: 140-147.
15
ZHOU W Y, WANG C F, AI T, et al. A novel fiber-reinforced polyethylene composite with added silicon nitride particles for enhanced thermal conductivity[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(6/7): 830-836.
16
TENG C C, MA C C M, CHIOU K C, et al. Synergetic effect of thermal conductive properties of epoxy composites containing functionalized multi-walled carbon nanotubes and aluminum nitride[J]. Composites Part B: Engineering, 2012, 43(2): 265-271.
17
GARI Y, UNO T. Estimation on thermal conductivities of filled polymers[J]. Journal of Applied Polymer Science, 1986, 32(7): 5705-5712.
18
徐淑艳,张皓然,卢晓玉,等.氮化硼纳米片制备及其改性导热复合材料研究进展[J].精细化工,2021,38(10):1962-1970.
19
刘畅,蔡会武,路卫卫,等.氮化硼填充导热复合材料研究进展[J].应用化工,2022,51(1):269-272.
20
李佩悦,马立云,谢恩俊,等.六方氮化硼高导热纳米材料:晶体结构、导热机理及表面修饰改性[J].材料导报,2020,36(6):44-55.
21
吴贺君,卢灿辉,胡彪,等.填充型聚乙烯基导热复合材料研究进展[J].塑料工业,2016,44(2):13-18.
22
WANG X, LU H, FENG C P, et al. Facile method to fabricate highly thermally conductive UHMWPE/BN composites with the segregated structure for thermal management[J]. Plastics, Rubber and Composites, 2020, 49(5): 196-203.
23
GUO Y Y, CAO C L, LUO F B, et al. Largely enhanced thermal conductivity and thermal stability of ultra high molecular weight polyethylene composites via BN/CNT synergy[J]. RSC Advances, 2019, 9(70): 40800-40809.
24
FENG C P, CHEN L, WEI F, et al. Highly thermally conductive UHMWPE/graphite composites with segregated structures[J]. RSC Advances, 2016, 6(70): 65709-65713.
25
WANG X W, WU P Y. Preparation of highly thermally con-ductive polymer composite at low filler content via a self-assembly process between polystyrene micro-spheres and boron nitride nanosheets[J]. ACS Applied Materials & Interfaces, 2017, 9(23): 19934-19944.
26
丁杨,周双喜,黄神恩,等.基于COMSOL三维仿真测定复合材料导热系数[J].传感器与微系统,2018,37(9):112-116.
27
谢思源,刘伟军,宋恺芸.COMSOL仿真测定多层复合板导热系数的可靠性验证[J].产业与科技论坛,2020,19(4):47-49.
28
RYU S H, CHO H B, KWON Y T, et al. Quasi-isotropic thermal conduction in percolation networks: Using the pore-filling effect to enhance thermal conductivity in polymer nanocomposites[J]. ACS Applied Polymer Materials, 2020, 3(3): 1293-1305.
29
NIU H T, ZHANG Y, XIAO G, et al. Preparation of quasi-isotropic thermal conductive composites by interconnecting spherical alumina and 2D boron nitride flakes[J]. Rare Metals, 2023, 42(4): 1283-1293.
30
陈金,王春峰,王永亮,等.氮化硼在聚乙烯/乙烯-醋酸乙烯共聚物中的选择性分布及复合材料的导热性能[J].高分子材料科学与工程,2015,31(2):98-107.

Comments

PDF(2874 KB)

Accesses

Citation

Detail

Sections
Recommended

/