Study on Structure and Properties of Crosslinked High Density Polyethylene

SUN Xiao-jie, REN Yue-qing, CHEN Lan-lan

PDF(1258 KB)
PDF(1258 KB)
Plastics Science and Technology ›› 2024, Vol. 52 ›› Issue (07) : 23-27. DOI: 10.15925/j.cnki.issn1005-3360.2024.07.005
Theory and Research

Study on Structure and Properties of Crosslinked High Density Polyethylene

Author information +
History +

Abstract

Crosslinking modification is one of the important methods of polyethylene modification. The effects of crosslinking degree and resin structure on rheological properties, crosslinking properties, crystallization properties and mechanical properties of crosslinked high density polyethylene (XHDPE) were studied. The results show that when the mass fraction of crosslinking agent increases from 0 to 1.2%, the maximum energy storage modulus (G'max) and gel content of XHDPE increase, and the minimum value of loss factor (tanδ min) decreases gradually. With the increase of the content of crosslinking agent, the crystallinity and grain size of XHDPE decreases, and the crystallization capacity decreases. After the addition of crosslinking agent, the tensile yield strength of XHDPE decreases gradually, the elongation at break increases first and then decreases, and the impact strength increases significantly. With the same content of crosslinking agent, the energy storage modulus of XHDPE and the viscoelasticity of macromolecular network increase gradually with the increase of molecular weight of base resin. When the elongation at break of high molecular weight HDPE reaches the maximum, the content of crosslinking agent required is lower. High molecular weight HDPE base resin is beneficial to improve the mechanical properties of crosslinked samples.

Key words

Crosslinked high density polyethylene / Resin structure / Crystal characteristics / Mechanical properties

Cite this article

Download Citations
SUN Xiao-jie , REN Yue-qing , CHEN Lan-lan. Study on Structure and Properties of Crosslinked High Density Polyethylene. Plastics Science and Technology. 2024, 52(07): 23-27 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.07.005

References

1
高克京,周京生,荔栓红,等.高密度聚乙烯的可控微交联反应[J].石油化工,2023,52(2):176-181.
2
程凯旋,杨加美,丁珮珊,等.高密度聚乙烯垫片的非线性压缩-回弹性能测试[J].武汉工程大学学报,2021,43(4):468-72.
3
张鹏,朱珍珍,朱裕国,等.高密度聚乙烯的结构与性能分析[J].化工技术与开发,2021,50(9):31-33, 40.
4
戴佳桐.输油管用耐热HDPE材料研究[D].北京:北京化工大学,2018.
5
刘丽英.热可逆交联聚乙烯的制备及性能研究[D].大连:大连理工大学,2021.
6
岑静芸,蔡伟.提高HDPE大中空专用料抗冲击性能的技术研究[J].广东化工,2020,47(9):55-57.
7
KHONAKDAR H A, JAFARI S H, HäSSLER R. Glass-transition-temperature depression in chemically crosslinked low-density polyethylene and high-density polyethylene and their blends with ethylene vinyl acetate copolymer[J]. Journal of Applied Polymer Science, 2007, 104(3): 1654-1660.
8
ZHANG X, YANG H, SONG Y, et al. Rheological behaviors of randomly crosslinked low density polyethylene and its gel network[J]. Polymer, 2012, 53(14): 3035-3042.
9
JIAO C, WANG Z, LIANG X, et al. Non-isothermal crystallization kinetics of silane crosslinked polyethylene[J]. Polymer Testing, 2005, 24(1): 71-80.
10
DASTJERDI J, MOTLAGH E N, GARMABI H. Crystallization, melting, and mechanical behavior of calcium carbonate-based nanocomposites of crosslinked high density polyethylene[J]. Polymer Composites, 2017, 38: E402-E411.
11
KHONAKDAR H A, JAFARI S H, WAGENKNECHT U, et al. Effect of electron-irradiation on cross-link density and crystalline structure of low- and high-density polyethylene[J]. Radiation Physics and Chemistry, 2006, 75(1): 78-86.
12
KHONAKDAR H A, MORSHEDIAN J, WAGENKNECHT U, et al. An investigation of chemical crosslinking effect on properties of high-density polyethylene[J]. Polymer, 2003, 44(15): 4301-4309.
13
YU S, PARK C, HONG S M, et al. Thermal conduction behaviors of chemically cross-linked high-density polyethylenes[J]. Thermochimica Acta, 2014, 583: 67-71.
14
刘群,钟蔚华,张勇,等.过氧化物交联超高分子量聚乙烯的结构与性能[J].工程塑料应用,2018,46(11):48-52, 57.
15
刘玉峰,胡天辉,朱志勇,等.交联体系对超高摩尔质量聚乙烯性能的影响[J].塑料工业,2017,45(1):21-4.
16
BENGTSSON M, GATENHOLM P, OKSMAN K. The effect of crosslinking on the properties of polyethylene/wood flour composites[J]. Composites Science and Technology, 2005, 65(10):1468-79.
17
黄安民,朱志勇,刘婷,等.导热交联超高摩尔质量聚乙烯耐磨复合材料的研究[J].塑料工业,2014,42(11):18-21.
18
梁伟忠,高宇,郭川东,等.蒙脱土/废弃XLPE/HDPE复合材料的摩擦磨损性能研究[J].塑料工业,2021,49(6):143-147, 164.
19
KHONAKDAR H A, MORSHEDIAN J, MEHRABZADEH M, et al. Thermal and shrinkage behaviour of stretched peroxide-crosslinked high-density polyethylene[J]. European Polymer Journal, 2003, 39(8): 1729-1734.
20
REN Y Q, SUN X J, CHEN L L, et.al. Structures and impact strength variation of chemically crosslinked high-density polyethylene: Effect of crosslinking density[J]. RSC Advances, 2021, 11(12): 6791-6797.
21
REN Y Q, SUN X J, LI Y F, et. al . Relationships between impact performance and structures of rotationally molded crosslinked high-density polyethylene[J]. Polymer Engineering & Science, 2021, 61(2): 410-419.
22
李亚飞,孙小杰,孙苗苗,等.滚塑用耐低温冲击阻燃交联聚乙烯的研制[J].塑料科技,2021,49(2):36-39.
23
KHONAKDAR H A, JAFARI S H, TAHERI M, et al. Thermal and wide angle X-ray analysis of chemically and radiation-crosslinked low and high density polyethylenes[J]. Journal of Applied Polymer Science, 2006, 100(4): 3264-3271.
24
BOBOVITCH A, GUTMAN E M, HENNING S, et al. Morphology and stress-relaxation of biaxially oriented cross-linked polyethylene films[J]. Materials Letters, 2003, 57(16/17): 2597-2601.
25
张忠峰,刘顺城,王克俭,等.过氧化物交联增韧改性PE-HD/POE共混物[J].中国塑料,2020,34(10):1-5
26
刘顺城.化学交联及弹性体协同增韧高密度聚乙烯[D].北京:北京化工大学,2021.
27
MIGUEZ SUAREZ J C, DE BIASI R S. Effect of gamma irradiation on the ductile-to-brittle transition in ultra-high molecular weight polyethylene[J]. Polymer Degradation and Stability, 2003, 82(2): 221-7.
28
KUAN H C, KUAN J F, MA C C M, et al. Thermal and mechanical properties of silane-grafted water crosslinked polyethylene[J]. Journal of Applied Polymer Science, 2005, 96(6): 2383-2391.
29
任月庆,董侠,陈学连,等.成型方法对交联聚乙烯冲击性能与结构的影响[J].中国塑料,2017,31(10):83-88.

Comments

PDF(1258 KB)

Accesses

Citation

Detail

Sections
Recommended

/