Effect of Epoxide-Modified GTR on the Structure and Properties of PLA

HU Yong-xiang, GAO Ai-guo, XIE Ji-ling, TANG Xiang-gang, SHEN Hong-wang, JU Guan-nan

PDF(2279 KB)
PDF(2279 KB)
Plastics Science and Technology ›› 2024, Vol. 52 ›› Issue (07) : 7-11. DOI: 10.15925/j.cnki.issn1005-3360.2024.07.002
Theory and Research

Effect of Epoxide-Modified GTR on the Structure and Properties of PLA

Author information +
History +

Abstract

After altering ground tire rubber(GTR) with formic acid and hydrogen peroxide, the epoxidation product (EGTR) was produced. The poly(lactic acid) (PLA)/EGTR blends were then made using the melt blending method, and their micro-morphology, crystalline behavior, and mechanical properties were all carefully examined. The results showed that the carbon-carbon double bond on the GTR molecular chain was successfully oxidized to an epoxy group by formic acid and hydrogen peroxide. The EGTR particles were evenly distributed throughout the PLA matrix, demonstrating good compatibility between the two phases. Furthermore, low levels of EGTR promote PLA crystallization, while high levels of EGTR inhibit PLA crystallization. The PLA/5% EGTR blends had the highest crystallinity of 11.1%, which was 4.8 times higher than that of pure PLA. The blends tensile strength declined as the EGTR content increased, while the impact strength and elongation at break showed a tendency of first increasing and then decreasing. When 10% EGTR was added, the blends had the maximum elongation at break and impact strength, with good toughening effect and tensile strength, showing the best overall mechanical properties. The study provides a basis and technical foundation for modifying PLA with GTR as a toughening material and promotes the recycling of waste rubber.

Key words

Poly(lactic acid) / Ground tire rubber / Epoxide modification / Interface compatibility / Mechanical property

Cite this article

Download Citations
HU Yong-xiang , GAO Ai-guo , XIE Ji-ling , et al . Effect of Epoxide-Modified GTR on the Structure and Properties of PLA. Plastics Science and Technology. 2024, 52(07): 7-11 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.07.002

References

1
FISCHER E K, PAGLIALONGA L, CZECH E, et al. Microplastic pollution in lakes and lake shoreline sediments—A case study on Lake Bolsena and Lake Chiusi (central Italy)[J]. Environmental Pollution, 2016, 213: 648-57.
2
庞哲宇,赵晶晶,万天丽,等.聚苯乙烯降解菌的筛选鉴定及降解特性研究[J].辽宁石油化工大学学报,2024,44(1):15-20.
3
YIN G Z, YANG X M. Biodegradable polymers: A cure for the planet, but a long way to go[J]. Journal of Polymer Research, 2020, DOI: 10.1007/s10965-020-2004-1.
4
MACLEOD M, ARP H P H, TEKMAN M B, et al. The global threat from plastic pollution[J]. Science, 2021, 373(6550): 61-65.
5
HAIDER T P, VÖLKER C, KRAMM J, et al. Plastics of the future? The impact of biodegradable polymers on the environment and on society[J]. Angewandte Chemie International Edition, 2019, 58(1): 50-62.
6
明璐,赵武学,康凯尔,等.聚乳酸材料增韧改性的研究进展[J].塑料科技,2023,51(7):116-20.
7
SAINI P, ARORA M, KUMAR M R. Poly (lactic acid) blends in biomedical applications[J]. Advanced Drug Delivery Reviews, 2016, 107: 47-59.
8
TYLER B, GULLOTTI D, MANGRAVITI A, et al. Polylactic acid (PLA) controlled delivery carriers for biomedical applications[J]. Advanced Drug Delivery Reviews, 2016, 107: 163-75.
9
董延茂,钟文芯,周兴,等.热塑性聚氨酯弹性体/聚乳酸复合材料的配方与性能研究[J].橡胶工业,2022,69(6):439-444.
10
ARMENTANO I, BITINIS N, FORTUNATI E, et al. Multifunctional nanostructured PLA materials for packaging and tissue engineering[J]. Progress in Polymer Science, 2013, 38(10/11): 1720-1747.
11
蓝峻峰,蒋青清,叶有明,等.PLA协同纳米CaCO3/BF增强LDPE复合材料的制备及其性能研究[J].塑料科技,2023,51(10):81-85.
12
ZHAO X, LIU J, LI J, et al. Strategies and techniques for improving heat resistance and mechanical performances of poly(lactic acid) (PLA) biodegradable materials[J]. International Journal of Biological Macromolecules, 2022, 218: 115-134.
13
ARMENTANO I, BITINIS N, FORTUNATI E, et al. Multifunctional nanostructured PLA materials for packaging and tissue engineering[J]. Progress in Polymer Science, 2013, 38(10-11): 1720-1747.
14
杨菊香,曾莎,贾园,等.聚乳酸改性及其应用进展[J].塑料,2020,49(5):102-107.
15
岳军锋,张洋洋.异山梨醇基增塑剂与聚乳酸相容性对其结晶形态的影响初探[J].塑料科技,2023,51(4):50-53.
16
WANG M, WU Y, LI Y D, et al. Progress in toughening poly (lactic acid) with renewable polymers[J]. Polymer Reviews, 2017, 57(4): 557-593.
17
HUANG J, FAN J, CAO L, et al. A novel strategy to construct co-continuous PLA/NBR thermoplastic vulcanizates: Metal-ligand coordination-induced dynamic vulcanization, balanced stiffness-toughness and shape memory effect[J]. Chemical Engineering Journal, 2020, DOI: 10.1016/j.cej.2019.123828.
18
WANG R, WANG S, ZHANG Y, et al. Toughening modification of PLLA/PBS blends via in situ compatibilization[J]. Polymer Engineering & Science, 2009, 49(1): 26-33.
19
ZHAO Q, DING Y, YANG B, et al. Highly efficient toughening effect of ultrafine full-vulcanized powdered rubber on poly (lactic acid)(PLA)[J]. Polymer Testing, 2013, 32(2): 299-305.
20
YANG J N, NIE S B, ZHU J B. A comparative study on different rubbery modifiers: Effect on morphologies, mechanical, and thermal properties of PLA blends[J]. Journal of Applied Polymer Science, 2016, DOI:10.1002/APP.43340.
21
YANG J N, NIE S B, DING G X, et al. Mechanical properties, morphologies and thermal decomposition kinetics of poly (lactic acid) toughened by waste rubber powder[J]. International Polymer Processing, 2015, 30(4): 467-475.
22
NEMATOLLAHI M, JALALI‐ARANI A, MODARRESS H. High‐performance bio-based poly (lactic acid)/natural rubber/epoxidized natural rubber blends: Effect of epoxidized natural rubber on microstructure, toughness and static and dynamic mechanical properties[J]. Polymer International, 2019, 68(3): 439-446.
23
纪奎江.我国废旧橡胶循环利用行业的现状与发展[J].橡胶工业,2023,70(9):755-761.
24
所同川,李忠明.废旧橡胶回收利用新技术[J].江苏化工,2004,32(6):1-6.
25
巩雨注,王小萍,贾德民.废旧轮胎粉碎技术及其应用进展[J].橡胶工业,2021,68(1):66-72.
26
SPIERLING S, KNÜPFFER E, BEHNSEN H, et al. Bio-based plastics—A review of environmental, social and economic impact assessments[J]. Journal of Cleaner Production, 2018, 185: 476-491.
27
MUJAL-ROSAS R, ORRIT-PRAT J, RAMIS-JUAN X, et al. Study on dielectric, thermal, and mechanical properties of the ethylene vinyl acetate reinforced with ground tire rubber[J]. Journal of Reinforced Plastics and Composites, 2011, 30(7): 581-592.
28
AWANG M, ISMAIL H, HAZIZAN M. Polypropylene-based blends containing waste tire dust: Effects of trans-polyoctylene rubber (TOR) and dynamic vulcanization[J]. Polymer Testing, 2007, 26(6): 779-787.
29
LIMA P, OLIVEIRA J, COSTA V. Partial replacement of EPDM by GTR in thermoplastic elastomers based on PP/EPDM: Effects on morphology and mechanical properties[J]. Journal of Applied Polymer Science, 2014, DOI:10.1002/app.40160.
30
RAMARAD S, KHALID M, RATNAM C, et al. Waste tire rubber in polymer blends: A review on the evolution, properties and future[J]. Progress in Materials Science, 2015, 72: 100-140.
31
LORENZO A T, ARNAL M L, ALBUERNE J, et al. DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to fit the data: Guidelines to avoid common problems[J]. Polymer Testing, 2007, 26(2): 222-231.

Comments

PDF(2279 KB)

Accesses

Citation

Detail

Sections
Recommended

/