Study on Properties of Glass Fiber Cloth Reinforced Core-Shell Particles SiO2@(1,2-PB/EPDM) Filled Polyolefin Composites

ZHANG Wei, FENG Chun-ming, LI Qiang, WANG Hao-dong

PDF(1446 KB)
PDF(1446 KB)
Plastics Science and Technology ›› 2024, Vol. 52 ›› Issue (06) : 46-50. DOI: 10.15925/j.cnki.issn1005-3360.2024.06.009
Theory and Research

Study on Properties of Glass Fiber Cloth Reinforced Core-Shell Particles SiO2@(1,2-PB/EPDM) Filled Polyolefin Composites

Author information +
History +

Abstract

The effect of core-shell SiO2@(1,2-PB/EPDM) particles on the properties of the polyolefin composites was investigated in this paper. Core-shell particles SiO2@(1,2-PB/EPDM) were prepared by acid activation, silane coupling agent KH-570 modification and precipitation polymerization. The core shell particles were added into the polyolefin resin, stirring and dispersing evenly. The polyolefin composite filled with glass fiber cloth reinforced core-shell particles SiO2@(1,2-PB/EPDM) was prepared by dipping glass fiber cloth into composite adhesive solution and hot pressing. The effects of different shell thickness on mechanical properties, dielectric properties and water absorption of the composites were investigated. The results show that with the increase of shell thickness, the flexural strength and flexural modulus of the composites increase, and the dielectric constant, loss factor and water absorption decrease. When the thickness of the polymer shell is 60 nm, the dielectric constant of the composite is 3.44, the loss factor is 3.46×10-3, the water absorption is 0.064%, the flexural strength is 178.8 MPa, and the flexural modulus is 16.57 GPa. The comprehensive performance of the polyolefin composites can meet the requirements of microwave substrate materials.

Key words

Glass fiber cloth / Core-shell particles / Polyolefin / Mechanical properties / Dielectric properties

Cite this article

Download Citations
ZHANG Wei , FENG Chun-ming , LI Qiang , et al. Study on Properties of Glass Fiber Cloth Reinforced Core-Shell Particles SiO2@(1,2-PB/EPDM) Filled Polyolefin Composites. Plastics Science and Technology. 2024, 52(06): 46-50 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.06.009

References

1
林金堵. 5G通信对PCB基材的要求[J].印刷电路信息,2021,29(1):7-12.
2
祝大同.高频高速覆铜板发展的新趋势[C]//中国电子材料行业协会覆铜板材料分会(CCLA).2021年中国覆铜板行业高层论坛论文集.中国电子电路行业协会覆铜板分会,2021.
3
江恩伟,扬中强.PTFE在覆铜板中的应用[J].印刷电路信息,2013(3):14-17.
4
喻宗根,辜信实.高频覆铜板的开发[J].印刷电路信息,2010(3):22-24.
5
姚晓刚,彭海益,林慧兴.微波复合基板研究进展[J].硅酸盐学报,2023,51(4):957-965.
6
WANG J C, SHEN Z H, JIANG J Y, et al. High-throughput finite-element design of dielectric composites for high-frequency copper clad laminates[J]. Composites Science Technology, 2022, DOI:10.1016/j.compscitech.2022.109517.
7
ZHANG X, ZHANG Y, ZHOU Q, et al. Symmetrical "sandwich"polybutadiene film with high-frequency low dielectric constants,ultralow dielectric loss,and high adhesive strength[J]. Industrial & Engineering Chemistry Research, 2020, 59(3): 1142-1150.
8
张芳芳,王春燕,邓婷,等. SiO2含量及粒径对SiO2/聚烯烃复合材料性能的影响[J].电子元件与材料,2019,38(10):7-10.
9
李会录,夏婷,苏建锋,等.碳氢树脂高频的研究进展[J].绝缘材料,2024,57(1):1-8.
10
吴博.聚烯烃树脂及其与二氧化硅复合材料的制备与性能研究[D].成都:电子科技大学,2022.
11
师剑英.浅析碳氢覆铜板的设计开发[C]//中国电子材料行业协会覆铜板材料分会(CCLA),中国电子电路行业协会(CPCA)覆铜板分会.苏州:第二十届中国覆铜板技术研讨会论文集,2019.
12
张恩宁,金石磊,马峰岭,等.SiO2颗粒形貌及粒径对SiO2填充碳氢树脂覆铜板性能的影响[J].机械工程材料,2023,47(1):65-69.
13
DONG J, WANG H, ZHANG Q, et al. Hydrocarbon resin-based composites with low thermal expansion coefficient and dielectric loss for high-frequency copper clad laminates[J]. Polymers, 2022, 14(11): 14-19.
14
杨俊,袁颖,杨熙,等.TiO2粒径对聚四氟乙烯/TiO2复合材料性能的影响[J].电子元件与材料,2015,34(6):4-7.
15
BALASUBRAMANIAN K B N, Role RAMESH T., effect, and influences of micro and nano-fillers on various properties of polymer matrix composites for microelectronics : A review[J]. Polymers Advanced Technologies, 2018, 29(6): 1568-1585.
16
LIU L P, LV F Z, LI P G, et al. Preparation of ultra-low dielectric constant silica/polyimide nanofiber membranes by electrospinning[J]. Composites Part A: Applied Science and Manufacturing, 2016, 84: 292-298.
17
DUAN G Y, CAO Y T, QUAN J Y, et al. Bioinspired construction of BN@polydopamine@Al2O3 fillers for preparation of a polyimide dielectric composite with enhanced thermal conductivity and breakdown strength[J]. Journal of Materials Science, 2020, 55: 8170-8184.
18
WU B, MAO X, XU Y, et al. Improved dielectric and thermal properties of core-shell structure SiO2/polyolefin polymer composites for high-frequency copper clad laminates[J]. Applied Surface Science, 2021, DOI: 10.1016/j.apsusc.2020.148911.
19
PYUN J, KOWALEWSKI T, MATYJASZEWSKI K. Synthesis of polymer brushes using atom transfer radical polymerization[J]. Macromolecular Rapid Communications, 2003, 24: 1043-1059.
20
EDMONDSON S, OSBOREN V L, HUCK W T S. Polymer brush via surface-initiated polymerization[J]. Chemical Society Reviews, 2004, 33: 14-22.
21
ZHANG W, ZHANG B, HE G W, et al. Enhanced water retention and proton conductivity of proton exchange membranes by incorporating hollow polymer microspheres grafted with sulfonated polystyrene brushes[J]. RSC Advances, 2015, 5: 5343-5356.
22
周茜,张瑶,陈蓉,等.SiO2表面改性对高填充SiO2/聚四氟乙烯复合薄膜性能的影响[J].复合材料学报,2020,37(9):1-10.
23
OKUBO M, IZUMI J. Synthesis of micro-sized monodispersed core-shell composite polymer particles by seeded dispersion polymerization[J]. Colloids and Surface A: Physiochemical and Engineering Aspects, 1999, 153: 297-304.
24
CHAUDHURI R G, PARIA S. Core/shell nanoparticles: Class, properties, synthesis mechanisms, characterization, and applications[J]. Chemical Reviews, 2012, 112: 2373-2433.
25
蒋旭红,刘展眉,涂伟萍.两步沉淀聚合法制备表面具有羧基的核-壳微球[J].高分子材料科学与工程,2012,28(7):132-135, 139.
26
庞子博.玻璃纤维纸增强PTFE复合基板的制备与性能[J].现代塑料加工应用,2023,35(1):52-55.
27
庞翔,袁颖,肖勇,等.SiO2含量对碳氢树脂/SiO2复合材料性能的影响[J].压电与声光,2012,34(4):577-580.

Comments

PDF(1446 KB)

Accesses

Citation

Detail

Sections
Recommended

/