Study on Preparation and Performance of Three-Dimensional and High Conductivity Polyethylene/Carbon Composite Bipolar Plate

QIN Ye, HAN Song, WANG Shuo, LIU Chang

PDF(2614 KB)
PDF(2614 KB)
Plastics Science and Technology ›› 2024, Vol. 52 ›› Issue (06) : 10-15. DOI: 10.15925/j.cnki.issn1005-3360.2024.06.003
Theory and Research

Study on Preparation and Performance of Three-Dimensional and High Conductivity Polyethylene/Carbon Composite Bipolar Plate

Author information +
History +

Abstract

As one of the components of vanadium batteries, the low conductivity of bipolar plates has become an important factor in restricting the improvement of battery performance. Polyethylene (PE) and various dimensional conductive fillers, such as spherical carbon black (CB), flake graphite (FG), linear carbon fiber (CF), and carbon nanotubes (CNTW), were used as the main raw materials to prepare a point-line-surface three-dimensional highly conductive network carbon plastic composite bipolar plate, and the conductive mechanism was analyzed. The results show that 33% CB can form a conductive path inside PE. The addition of 15% FG increases the contact area with carbon black, thereby enhancing the electrical conductivity of the carbon plastic composite bipolar plate. The addition of 7% CNTW and 5% CF in the bipolar plate forms short-range and long-range conductive pathways, resulting in optimal electrical conductivity and bending strength of 20 S/cm and 46.5 MPa, respectively. The energy efficiency of the bipolar plate reaches 70% at a high current density of 300 mA/cm2, which is 6.5% higher than that of the CB/FG bipolar plate. The energy efficiency of the bipolar plate does not decrease significantly after 500 charge and discharge cycles, indicating that the bipolar plate has good rate capability and service life.

Key words

Vanadium battery / Polyethylene resin / Carbon plastic composite bipolar plate / Conductive network

Cite this article

Download Citations
QIN Ye , HAN Song , WANG Shuo , et al. Study on Preparation and Performance of Three-Dimensional and High Conductivity Polyethylene/Carbon Composite Bipolar Plate. Plastics Science and Technology. 2024, 52(06): 10-15 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.06.003

References

1
刘涛,葛灵,张一敏.全钒液流电池关键技术进展与发展趋势[J].中国冶金,2023,33(4):1-8.
2
梁力仁,曾义凯.全钒液流电池用双极板材料研究进展[J].制冷与空调(四川),2023,37(3):375-381.
3
魏甲明,刘召波,陈宋璇,等.全钒液流电池技术研究进展[J].中国有色冶金,2022,51(3):14-21.
4
王丹阳,胡三高,何海婷,等.混合储能辅助风电场平滑出力的功率配比方法研究[J].节能,2022,41(1):4-9.
5
张鑫,杨洋,陈远,等.基于全钒液流电池储能的新能源接入台区电压越限治理技术研究[J].电瓷避雷器,2023(6):38-44.
6
MATHEW C, NAINA M S, DEVANATHAN L S. A comprehensive review of current research on various materials used for developing composite bipolar plates in polymer electrolyte membrane fuel cells[J]. Polymer Composites, 2022, 43(7): 4100-4114.
7
高海.全钒液流电池关键材料研究进展及展望[J].能源与环境,2023(6):73-75.
8
张华民.全钒液流电池的技术进展、不同储能时长系统的价格分析及展望[J].储能科学与技术,2022,11(9):2772-2780.
9
姜鹏,曾坤,邹涛,等.电解液输送系统对全钒液流电池储能系统性能影响[J].电源技术,2023,47(6):776-780.
10
赵明远,何文,贾树旺,等.新型全钒液流电池浅析[J].设备管理与维修,2023(22):178-179.
11
林亮,禹争光,张红亮,等.大功率全钒液流电池系统效率优化分析[J].东方汽轮机,2023(3):61-65.
12
冯利利,陈越,李吉刚,等.碳基复合材料模压双极板研究进展[J].工程科学学报,2021,43(5):585-593.
13
白忠熬,高俊,刘颖.石墨烯增强聚乙烯复合材料的研究进展[J].塑料科技,2021,49(9):113-115.
14
孙静,熊礼龙,刘乐.聚乙烯塑料光降解研究进展[J].塑料科技,2022,50(7):120-123.
15
潘华清.石墨烯/聚乙烯高性能复合材料的制备与性能表征[J].塑料科技,2020,48(3):34-36.
16
杨衡彬,韩宏昌,王海峰,等.聚丙烯/炭黑/废纸纤维导电复合材料的性能研究[J].塑料科技,2023,51(3):42-46.
17
弓合兴,杨敏鸽,姜凤阳,等.聚丙烯/高密度聚乙烯/氮化硼导热复合材料的制备及性能研究[J].塑料科技,2023,51(3):1-6.
18
冯顺利.长玻纤增强聚丙烯汽车前端框架注塑成型方案优化分析[J].塑料科技,2023,51(11):94-98.
19
ONYU K, YEETSORN R, GOSTICK J. Fabrication of bipolar plates from thermoplastic elastomer composites for vanadium redox flow battery[J]. Polymers, 2022, DOI: 10.3390/polym14112143.
20
戴纹硕,郭骞远,陈向南,等.全钒液流电池双极板材料研究进展[J].储能科学与技术,2024,13(4):1310-1325.
21
杨文君,李敏,房少华,等.钒电池用碳塑复合双极板的制备及性能研究[J].化工管理,2018(20):18-19.
22
侯绍宇,刘西文,陈晖,等.碳布增强型导电塑料双极板的制备与性能[J].电源技术,2011,35(8):926-928.
23
GHOSH A, GOSWAMI P, MAHANTA P, et al. Effect of carbon fiber length and graphene on carbon-polymer composite bipolar plate for PEMFC[J]. Journal of Solid State Electrochemistry, 2014, 18: 3427-3436.
24
曾浩东,彭涛,李文凯,等.膨胀石墨/聚酰亚胺-聚醚醚酮复合石墨双极板的制备及性能研究[J].炭素技术,2022,41(5):41-46.
25
杨玲玲,瞿小兰,汤璐,等.聚乙烯/炭黑复合体系电性能的研究[J].塑料科技,2023,51(3):47-50.
26
杨铮鑫,柴子涵,金志浩,等.石墨烯增强碳纤维复合材料抗冲击性能分析[J].塑料科技,2023,51(8):48-53.
27
KIM S, YOON Y, NAREJO G M, et al. Flexible graphite bipolar plates for vanadium redox flow batteries[J]. International Journal of Energy Research, 2021, 45(7): 11098-11108.
28
ADLOO A, SADEGHI M, MASOOMI M, et al. High performance polymeric bipolar plate based on polypropylene/graphite/graphene/nano-carbon black composite for PEM fuel cell[J]. Renewable Energy, 2016, 99: 867-874.
29
吕波,邵志刚,瞿丽娟,等.PEMFC用聚丙烯/酚醛树脂/石墨复合双极板研究[J].电源技术,2019,43(9):1488-1491.
30
GUPTA G, SATOLA B, KOMSIYSKA L, et al. Electrochemical aging and characterization of graphite-polymer based composite bipolar plates for vanadium redox flow batteries[J]. Journal of The Electrochemical Society, 2022, DOI: 10.1149/1945-7111/ac8240.
31
王新生,井明华,房大维.石墨毡原位生长TiN纳米棒及其作为钒电池电极的电化学性能研究[J].化学试剂,2021,43(8):1018-1024.
32
JIANG H R, ZHANG B W, SUN J, et al. A gradient porous electrode with balanced transport properties and active surface areas for vanadium redox flow batteries[J]. Journal of Power Sources, 2019, DOI: 10.1016/j.jpowsour.2019.227159.

Comments

PDF(2614 KB)

Accesses

Citation

Detail

Sections
Recommended

/