Design and Property of Photosensitive Resin Slurry for UV-Curing 3D Printing of Ceramics

NIU Shu-xin, WANG Ke, ZHOU Yu-long, GUO Xin-long, HU Xiao-jian, XU Xi-qing

PDF(1920 KB)
PDF(1920 KB)
Plastics Science and Technology ›› 2024, Vol. 52 ›› Issue (06) : 1-5. DOI: 10.15925/j.cnki.issn1005-3360.2024.06.001
Theory and Research

Design and Property of Photosensitive Resin Slurry for UV-Curing 3D Printing of Ceramics

Author information +
History +

Abstract

UV-curing 3D printing has shown great application prospects in the preparation of complex ceramic components. The selection of oligomers directly affects the printing performance of liquid photosensitive resins, which has an important impact on the structure and properties of 3D printed ceramic materials. To optimize the performance of photosensitive resin slurry for ceramic photopolymerization 3D printing, this study prepared photoresin premix solutions and 3D printing ceramic slurries using oligomers such as epoxy acrylate (EA), polyurethane acrylate (PUA), and organosilicon-modified polyurethane acrylate (PSUA). The influence of oligomer types on the printing performance of photoresin and ceramic slurry was investigated.The results showed that the photoresin slurry prepared from PUA demonstrated the optimal photocuring properties, with a viscosity of 143 mPa·s, a curing thickness of 341 μm, and a flexural strength of 33.76 MPa. Furthermore, PUA exhibited the lowest critical exposure dose of 20.022 mJ/cm², indicating the highest susceptibility to curing, making it suitable for the 3D printing of ceramic materials. Photosensitive resin slurry formulated with PUA was utilized to fabricate silica ceramic slurry, enabling the printing of complex-structured ceramic specimens. The microstructure of the ceramic specimens was relatively uniform, effectively reducing interlayer gaps, and the printing outcome was satisfactory.

Key words

3D printing / Photosensitive resin / Oligomer / Curing performance / Silica ceramics

Cite this article

Download Citations
NIU Shu-xin , WANG Ke , ZHOU Yu-long , et al . Design and Property of Photosensitive Resin Slurry for UV-Curing 3D Printing of Ceramics. Plastics Science and Technology. 2024, 52(06): 1-5 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.06.001

References

1
XU X, TAO T, ZHANG X, et al. Spark plasma sintering of ZrO2-Al2O3 nanocomposites at low temperatures aided by amorphous powders[J]. Ceramics International, 2020, 46(4): 4365-4370.
2
袁媛,王为林,谢小山.陶瓷粉增强PP复合材料性能的研究[J].塑料科技,2020,48(10):36-39.
3
陈威,邹辛祺,史鸿星,等.生物陶瓷作为人体植入假体应用的研究现状及展望[J].中国陶瓷,2020,56(1):5-11.
4
沈睿,褚忠,王武,等.3D打印塑料材料在汽车配件设计中的应用[J].塑料科技,2020,48(2):157-160.
5
王超.3D打印技术在传统陶瓷领域的应用进展[J].中国陶瓷,2015,51(12):6-11.
6
金帅,宋浩,宋立新,等.3D打印PLA/PPC复合材料热学性能及力学性能的研究[J].塑料科技,2023,51(9):68-73.
7
许西庆,杨永康,李杰,等.空心叶片铸造用陶瓷型芯的3D打印及性能调控研究进展[J].硅酸盐学报,2023,51(6):1583-1594.
8
张涛,杜国芳,张仲颖.不同3D打印技术塑料力学性能研究进展[J].塑料科技,2021,49(10):113-116.
9
许西庆,樊嘉显,牛书鑫,等.3D打印氧化硅陶瓷型芯的各向异性调控及高温强化性能[J].硅酸盐学报,2022,50(9):2422-2429.
10
吴甲民,陈敬炎,陈安南,等.陶瓷零件增材制造技术及在航空航天领域的潜在应用[J].航空制造技术,2017(10):40-49, 58.
11
金波成,李鸣.3D打印氮化硅陶瓷点阵结构的性能研究[J].中国陶瓷,2022,58(11):45-54.
12
马月婷,尹绍奎,于瑞龙,等.光固化3D打印陶瓷型芯技术的研究进展[J].铸造,2022,71(3):271-276.
13
FAN J, XU X, NIU S, et al. Anisotropy management on microstructure and mechanical property in 3D printing of silica-based ceramic cores[J]. Journal of the European Ceramic Society, 2022, 42(10): 4388-4395.
14
刘庆壮,许路佳,范立成.陶瓷快速成型技术研究现状与展望[J].机械制造与自动化,2020,49(5):50-52.
15
徐豪,黄丽婕,何鹏,等.3D打印用双组分丙烯酸酯光敏树脂制备与性能[J].工程塑料应用,2020,48(9):72-77.
16
韩卓群,李伶,刘时浩,等.光固化ZrO2陶瓷料浆的流变性能研究[J].硅酸盐通报,2021,40(6):1965-1971.
17
MU Y, CHEN J, AN X, et al. Effect of synergism of solid loading and sintering temperature on microstructural evolution and mechanical properties of 60 vol% high solid loading ceramic core obtained through stereolithography 3D printing[J]. Journal of the European Ceramic Society, 2023, 43: 661-675.
18
SONG S Y, PARK M S, LEE D, et al. Optimization and characterization of high-viscosity ZrO2 ceramic nanocomposite resins for supportless stereolithography[J]. Materials & Design, 2019, DOI: 10.1016/j.matdes.2019.107960.
19
杨勇,郭啸天,唐杰,等.非氧化物陶瓷光固化增材制造研究进展及展望[J].无机材料学报,2022,37(3):267-277.
20
LI H, LIU Y S, LIU Y S, et al. Evolution of the microstructure and mechanical properties of stereolithography formed alumina cores sintered in vacuum[J]. Journal of the European Ceramic Society, 2020, 40(14): 4825-4836.
21
梁栋,何汝杰,方岱宁.陶瓷材料与结构增材制造技术研究现状[J].现代技术陶瓷,2017,38(4):231-247.
22
李文利,周宏志,刘卫卫,等.光固化3D打印陶瓷浆料及流变性研究进展[J].材料工程,2022,50(7):40-50.
23
黄笔武,黄伯芬,谌伟庆,等.光固化快速成形光敏树脂临界曝光量和透射深度的测试研究[J].信息记录材料,2007(1):59-62.
24
NIU S, LIU Z, LUO Y, et al. Reinforcement of silica-based ceramic cores based on amorphous and polycrystalline mullite fibers[J]. 2023, 49(19): 31378-31384.
25
周伟召,李涤尘,周鑫南,等.基于光固化的直接陶瓷成形工艺[J].塑性工程学报,2009,16(3):198-201.
26
ZHANG K, XIE C, WANG G, et al. High solid loading, low viscosity photosensitive Al2O3 slurry for stereolithography based additive manufacturing[J]. Ceramics International, 2019, 45(1): 203-208.
27
杨媛丽,王永祯,王爱玲.光固化快速成型中光敏树脂固化机理研究[J].材料开发与应用,2006(6):8-10.
28
吴丽珍,邓昌云,傅兵,等.3D打印用光敏树脂的制备及改性研究进展[J].塑料科技,2017,45(7):112-119.
29
冯丹,杨政远,温雅晴,等.聚氨酯低聚物对光固化树脂基质性能的影响[J].口腔医学研究,2023,39(11):1000-1004.
30
NIU S, LUO Y, LI X, et al. 3D printing of silica-based ceramic cores reinforced by alumina with controlled anisotropy[J]. Journal of Alloys and Compounds, 2022, DOI: 10.1016/j.jallcom.2022.166325.
31
陈典典,鲍明东,李鑫,等.3D打印氧化硅基陶瓷型芯的各向异性研究[J].中国陶瓷,2020,56(5):33-39.
32
LI Q, HOU W, LIANG J, et al. Controlling the anisotropy behaviour of 3D printed ceramic cores: From intralayer particle distribution to interlayer pore evolution[J]. Additive Manufacturing, 2022, DOI: 10.1016/j.addma.2022.103055.

Comments

PDF(1920 KB)

Accesses

Citation

Detail

Sections
Recommended

/