Chitosan and Its Application in Degradable Mulch Film

FAN Jin-shi, ZHOU Ye-jie, QIU Ling-xi, SHI Ze-yuan

PDF(770 KB)
PDF(770 KB)
Plastics Science and Technology ›› 2024, Vol. 52 ›› Issue (05) : 151-155. DOI: 10.15925/j.cnki.issn1005-3360.2024.05.033
Review

Chitosan and Its Application in Degradable Mulch Film

Author information +
History +

Abstract

Chitosan, a naturally abundant biopolymer, emerges as a promising candidate for eco-friendly degradable mulch films due to its antibacterial properties, crop growth promotion, thermal and moisture retention, and biodegradability. This article outlines the basic structure, and key physicochemical properties of chitosan. It delves into the mechanisms through which chitosan enhances crop growth, alleviates soil compaction, and induces plant resistance in the context of mulch films. The discussion extends to prevalent chitosan-based mulch films and areas for improvement, analyzing the challenges and future trends of chitosan as a degradable mulch film material.

Key words

Chitosan / Biodegradable mulch film / Biological degradability

Cite this article

Download Citations
FAN Jin-shi , ZHOU Ye-jie , QIU Ling-xi , et al. Chitosan and Its Application in Degradable Mulch Film. Plastics Science and Technology. 2024, 52(05): 151-155 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.05.033

References

1
SANDER M. Biodegradation of polymeric mulch films in agricultural soils: Concepts, knowledge gaps, and future research directions[J]. Environmental Science & Technology, 2019, 53(5): 2304-2315.
2
魏鹏程,张芮,王建旺,等.不同覆盖材料对西北地区青贮玉米生长性状及产量的影响[J].饲料研究,2023,46(11):106-109.
3
丁茜,余佳,蒋馨漫,等.生物降解地膜材料的研究进展[J].工程塑料应用,2019,47(12):150-153.
4
李雯雯,王岩,王盛男,等.生物可降解地膜材料的研究综述[J].现代农业研究,2023,29(7):115-118.
5
蒋小姝,莫海涛,苏海佳,等.甲壳素及壳聚糖在农业领域方面的应用[J].中国农学通报,2013,29(6):170-174.
6
ARANAZ I, ALCANTARA A R, Civera M C, et al. Chitosan: An overview of its properties and applications[J]. Polymers, 2021, DOI:10.3390/polym13193256.
7
KUMIRSKA J, WEINHOLD M X, THÖMING J, et al. Biomedical activity of chitin/chitosan based materials—Influence of physicochemical properties apart from molecular weight and degree of N-acetylation[J]. Polymers, 2011, 3(4): 1875-1901.
8
WANG J L, ZHUANG S T. Chitosan-based materials: Preparation, modification and application[J]. Journal of Cleaner Production, 2022, DOI:10.1016/j.jclepro.2022.131825.
9
WANG W J, XUE C H, MAO X Z. Chitosan: Structural modification, biological activity and application[J]. International Journal of Biological Macromolecules, 2020, 164: 4532-4546.
10
李莹,杨欣悦,王雪羽,等.壳聚糖基复合膜的成膜机理和特性研究进展[J].食品工业科技,2022,43(7):430-438.
11
HOELL I A, VAAJE-KOLSTAD G, EIJSINK V G. Structure and function of enzymes acting on chitin and chitosan[J]. Biotechnology & Genetic Engineering Reviews, 2010, 27: 331-366.
12
SHINYA S, FUKAMIZI T. Interaction between chitosan and its related enzymes: A review[J]. International Journal of Biological Macromolecules, 2017, 104: 1422-1435.
13
TSIGOS I, MARTINOU A, KAFETZOPOULOS D, et al. Chitin deacetylases: New, versatile tools in biotechnology[J]. Trends in Biotechnology, 2000, 18(7): 305-312.
14
XIA W S, LIU P, LIU J. Advance in chitosan hydrolysis by non-specific cellulases[J]. Bioresource Technology, 2008, 99(15): 6751-6762.
15
TEGL G, OHLKNECHT C, BVIELNASCHER R, et al. Cellobiohydrolases produce different oligosaccharides from chitosan[J]. Biomacromolecules, 2016, 17(6): 2284-2292.
16
VÅRUM K M, HOLME H K, IZUME M, et al. Determination of enzymatic hydrolysis specificity of partially N-acetylated chitosans[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 1996(1): 5-15.
17
QIN C, DU Y, ZONG L, et al. Effect of hemicellulase on the molecular weight and structure of chitosan[J]. Polymer Degradation and Stability, 2003, 80(3): 435-441.
18
LIMPANAVECH P, CHAIYASUTA S, VONGPROMEK R, et al. Chitosan effects on floral production, gene expression, and anatomical changes in the Dendrobium orchid[J]. Scientia Horticulturae, 2008, 116(1): 65-72.
19
CHATELAIN P G, PINTADO M E, VASCONCELOS M W. Evaluation of chitooligosaccharide application on mineral accumulation and plant growth in Phaseolus vulgaris[J]. Plant Science, 2014, 215: 134-140.
20
KHAN W M, PRITHIVIRAJ B, SMITH D L. Effect of foliar application of chitin and chitosan oligosaccharides on photosynthesis of maize and soybean[J]. Photosynthetica, 2002, 40: 621-624.
21
MIRBOLOOK A, RASOULI-SADAGHIANI M, SEPEHR E, et al. Synthesized Zn(Ⅱ)-amino acid and -chitosan chelates to increase Zn uptake by bean plants[J]. Journal of Plant Growth Regulation, 2021, 40(2): 831-847.
22
MALLIK A, KABIR S F, RAHMAN F B, et al. Cu(Ⅱ) removal from wastewater using chitosan-based adsorbents: A review[J]. Journal of Environmental Chemical Engineering, 2022, DOI:10.1016/j.jece.2022.108048.
23
CHAKRABORTY M, HASANUZZAMAN M, RAHMAN M, et al. Mechanism of plant growth promotion and disease suppression by chitosan biopolymer[J]. Agriculture-Basel, 2020, DOI:10.3390/agriculture10120624.
24
PORNPEANPAKDEE P, PICHYANGKURA R, CHADCHAWAN S, et al. Chitosan effects on dendrobium 'eiskul'protocorm-like body production[C]//Proceedings of the Proceedings of the 31st Congress on Science and Technology of Thailand. Nakornrachaseema, 2005.
25
NAHAR S J, KAZUHIKO S, HAQUE S M. Effect of polysaccharides including elicitors on organogenesis in protocorm-like body (PLB) of cymbidium insigne in vitro[J]. Journal of Agricultural Science and Technology B, 2012, 2(9B): 1029-1033.
26
LI K C, XING R G, LIU S, et al. Chitin and chitosan fragments responsible for plant elicitor and growth stimulator[J]. Journal of Agricultural and Food Chemistry, 2020, 68(44): 12203-12211.
27
ALI E F, EI-SHEHAWI A M, IBRAHIM O H M, et al. A vital role of chitosan nanoparticles in improvisation the drought stress tolerance in Catharanthus roseus (L.) through biochemical and gene expression modulation[J]. Plant Physiology and Biochemistry, 2021, 161: 166-175.
28
HAFEZ Y, ATTIA K, ALAMERY S, et al. Beneficial effects of biochar and chitosan on antioxidative capacity, osmolytes accumulation, and anatomical characters of water-stressed barley plants[J]. Agronomy-Basel, 2020, DOI: 10.3390/agronomy10050630.
29
HIDANGMAYUM A, DWIVEDI P, KATIYAR D, et al. Application of chitosan on plant responses with special reference to abiotic stress[J]. Physiology Molecular Biology Plants, 2019, 25(2): 313-326.
30
AMERANY F E I, MEDDICH A, WAHBI S, et al. Foliar application of chitosan increases tomato growth and influences mycorrhization and expression of endochitinase-encoding genes[J]. International Journal of Molecular Sciences, 2020, DOI: 10.3390/ijms21020535.
31
ALKAHTANI M D F, ATTIA K A, HAFEZ Y M, et al. Chlorophyll fluorescence parameters and antioxidant defense system can display salt tolerance of salt acclimated sweet pepper plants treated with chitosan and plant growth promoting rhizobacteria[J]. Agronomy-Basel, 2020, DOI: 10.3390/agronomy10081180.
32
隋振全,毛金超,范金石.壳聚糖/聚乙烯醇液态地膜的制备与应用[J].中国塑料,2022,36(3):21-25.
33
党旭岗,胡才辉,陈慧.液态地膜与制革废弃物资源化[J].皮革科学与工程,2015,25(6):23-27, 33.
34
SUN Z H, NING R X, QIN M H, et al. Sustainable and hydrophobic polysaccharide-based mulch film with thermally stable and ultraviolet resistance performance[J]. Carbohydrate Polymers, 2022, DOI: 10.1016/j.carbpol.2022.119865.
35
JIA H, WANG Z H, ZHANG J Z, et al. Effects of biodegradable mulch on soil water and heat conditions, yield and quality of processing tomatoes by drip irrigation[J]. Journal of Arid Land, 2020, 12(5): 819-836.
36
ANIFANTIS A S, CANZIO G, CRISTIANO G, et al. Influence of the use of drip irrigation systems and different mulching materials on ornamental sunflowers in greenhouse cultivation[J]. Acta Horticulturae, 2012, 952: 385-392.
37
KUBAVAT D, TRIVEDI K, VAGHELA P, et al. Characterization of a chitosan-based sustained release nanofertilizer formulation used as a soil conditioner while simultaneously improving biomass production of Zea mays L[J]. Land Degradation & Development, 2020, 31(17): 2734-2746.
38
ABDELHAK M. Soil improvement in arid and semiarid regions for sustainable development[J]. Natural Resources Conservation and Advances for Sustainability, 2022, DOI: 10.1016/B978-0-12-822976-7.00026-0.
39
CZEKUS Z, LQBAL N, POLLAK B, et al. Role of ethylene and light in chitosan-induced local and systemic defence responses of tomato plants[J]. Journal of Plant Physiology, 2021, DOI:10.1016/j.jplph.2021.153461.
40
DEVIREDDY A R, LISCUM E, MITTLER R. Phytochrome B is required for systemic stomatal responses and reactive oxygen species signaling during light stress[J]. Plant Physiology, 2020, 184(3): 1563-1572.
41
NASCIMENTO V L, PEREIRA A M, PEREIRA A S, et al. Physiological and metabolic bases of increased growth in the tomato ethylene-insensitive mutantNever ripe: extending ethylene signaling functions[J]. Plant Cell Reports, 2021, 40(8): 1377-1393.
42
PRASAD R, GUPTA N, KUMAR M, et al. Nanomaterials act as plant defense mechanism[J]. Nanotechnology: Food and Environmental Paradigm, 2017, DOI: 10.1007/978-981-10-4678-0_14.
43
AVILA R G, MAGALHAES P C, VITORINO L C, et al. Chitosan induces sorghum tolerance to water deficits by positively regulating photosynthesis and the production of primary metabolites, osmoregulators, and antioxidants[J]. Journal of Soil Science and Plant Nutrition, 2022, 23(1): 1156-1172.
44
李美芹.壳聚糖抑制番茄叶霉病菌的活性与诱导抗性及其机理研究[D].青岛:中国海洋大学,2007.
45
蒋万枫, ,何培青, 张金灿,等.壳寡糖对番茄叶挥发性抗真菌物质及植保素日齐素的诱导效应[J].中国海洋大学学报:自然科学版,2004(6):1008-1012.
46
张才灵.壳聚糖功能及其农业中应用探析[J].化学工程与装备,2008(3):124-125.
47
YANG Y, LI P W, JIAO J, et al. Renewable sourced biodegradable mulches and their environment impact[J]. Scientia Horticulturae, 2020, DOI: 10.1016/j.scienta.2020.109375.
48
MANZANO V, GARCIA N L, RAMIREZ C R, et al. Mulch plastic systems: Recent advances and applications[J]. Polymers for Agri-Food Applications, 2019, DOI: 10.1007/978-3-030-19416-1_14.
49
SUN K Q, LI F Y, lI J Y, et al. Optimisation of compatibility for improving elongation at break of chitosan/starch films[J]. RSC Advances, 2019, 9(42): 24451-24459.
50
GALVIS-SANCHEZ A C, SOUSA A M M, HILLIOU L, et al. Thermo-compression molding of chitosan with a deep eutectic mixture for biofilms development[J]. Green Chemistry, 2016, 18(6): 1571-1580.
51
LIU C L, XU Y K, KOU P W, et al. Preparation of a biodegradable mulch film exhibiting a high photothermal conversion efficiency and bioactive effects[J]. Starch‐Stärke, 2022, DOI: 10.1002/star.202200188.
52
隋振全.壳聚糖基液态地膜的制备及性能研究[D].青岛:青岛科技大学,2022.
53
MERINO D, ALVAREZ V A. Green microcomposites from renewable resources: effect of seaweed (Undaria pinnatifida) as filler on corn starch-chitosan film properties[J]. Journal of Polymers and the Environment, 2020, 28(2): 500-516.

Comments

PDF(770 KB)

Accesses

Citation

Detail

Sections
Recommended

/